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Resumé

Rydberg superatomer hvor N � 1 enkelte atomer deler en enkelt excitation udgør en plat-
form, hvor det er muligt at etablere stærk kobling mellem en effektiv emitter og et felt med f̊a
fotoner. Denne kobling er mulig fordi Rydbergblokaden begrænser antallet af excitationer i et
ensemble af ultrakolde atomer til en enkelt, og dermed omdannes ensemblet til et effektivt to-
niveau-system. Excitationens kollektive karakter giver anledning til forstærket kobling mellem
det effektive to-niveau-system og et drivende elektromagnetisk felt, og de faser, som dette felt
præge de enkelte atomers fase, leder til en stærk ensretning af superatomets str̊aling tilbage i
samme retning som det drivende felt. Dette projekt beskriver observation af kohærent indre
dynamik i et Rydberg superatom og demonstrerer kontrolleret multifotonabsorption med en
kæde af Rydberg superatomer. Vi observerer effekten af indre dynamik i superatomets kollek-
tive enkeltfotonstr̊aling efter en drivende puls. Vi observerer, at str̊alingsraten oscillerer som
funktion af pulslængden, frem for at være konstant og bestemt af den kollektive koblingsstyrke
til det drivende felt.

Denne observation indikerer, at str̊alingsraten afhænger af superatomets indre tilstand,
og vi tilskriver denne afhængighed til en kohærent kobling mellem de N forskellige kollektive
tilstande med en enkelt excitation.

For at opn̊a kontrolleret og præcis absorption af op til tre fotoner implementerer vi et
kaskadesystem af op til tre superatomer. I dette tilfælde udnytter vi det faktum, at super-
atomerne opfører sig som absorbanter, der mættes ved absorption af en enkelt foton. Ved at
maksimere raten for tab af faseinformation kan vi overføre den kollektive excitation fra den
stærkt koblede tilstand med ensrettet str̊aling til tilstande, som ikke er koblet til lyset. Disse
tilstande henfalder med henfaldsraten for et enkelt atom, men de er stadig exciterede, og derfor
blokerer de superatomet for nye excitationer.

Afslutningsvist giver vi en perspektivering p̊a, hvordan systemet diskuteret her kan opti-
meres, s̊a fasetabet minimeres for med henblik p̊a eksperimentelt observere vekselvirkninger
imellem superatomerne. En s̊adan vekselvirkning vil være medieret af den ensrettede udvek-
sling af fotoner langs det drivende felts mode, som effektivt udgør en ensrettet bølgeleder.



Abstract

Rydberg superatoms in which N � 1 individual atoms collectively share a single excitation
offer a platform to realize strong coupling between an effective two-level quantum emitter and
few-photon fields. This is possible as the Rydberg blockade limits the number of excitations
in an ensemble of ultracold atoms to one, thereby effectively forming a two-level system.
The collective nature of the excitation gives rise to the strongly enhanced coupling and the
phase imprinted on the individual constituent atoms by the driving fields leads to a strong
directionality of the superatom’s emission back into the driving mode. This thesis reports on
the observation of coherent internal dynamics within a superatom and the demonstration of
controlled multi-photon absorption using a chain of cascaded Rydberg superatoms.

The effects of the internal dynamics are observed in the superatom’s collective emission
of a photon into the driving mode. As we change the length of the driving pulse, we observe
oscillations in the decay rate instead of constant decay determined by the collective coupling
strength to the driving field. This indicates a dependence on the internal dynamics of the decay,
which we attribute to a coherent coupling between the N singly excited collective states of a
superatom.

To realize controlled and exact absorption of up to three photons, we implement a cascaded
system of up to three superatoms. Here, we exploit the fact that they act as absorbers that
are saturated following absorption of a single photon. By maximizing the dephasing of the
superatom, we transfer the collective excitation from a strongly coupled and directionally
emitting collective bright state to dark states that are not coupled to the forward mode, but
still excited such that the blockade prevents absorption of further photons.

Finally, this thesis gives an outlook on how to optimize our system of cascaded superatoms
in the limit of weak dephasing to experimentally observe interactions between multiple su-
peratoms, which are mediated by directional photon exchange along the probe mode, which
effectively forms a chiral waveguide.



This thesis is based on the following publications:

N. Stiesdal, H. Busche, J. Kumlin, K. Kleinbeck, H.P. Büchler, and S. Hofferberth:
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Chapter 1

Introduction

The interaction of electromagnetic radiation with matter is one of the most fundamental
processes in nature. The early universe expanded through radiation pressure, energy transfer
through photosynthesis enables life as we know it on Earth, and the interaction between light
and matter is essential for our perception of the world.

The most basic form of light-matter interaction is that of a single photon with a single
quantum emitter, such as an atom. This interaction can be described by quantum mechanics
which was developed over the last 100 years, in particular quantum electrodynamics. The
development of lasers in the 1960s has opened new ways of exploring light-matter interactions
experimentally [1]. It has also led to the development of central techniques in modern atomic
physics such as laser cooling and optical trapping of atoms [2–5]. These developments have
facilitated a high degree of control over quantum systems even down to the single-photon and
single-atom level [6, 7].

The simplest approach to describing a bulk-medium interacting with light is to describe the
medium as a sum of N independent emitters interacting with the light without affecting each
other. This approach is sufficient for many purposes, in particular if there is no interaction
between the constituent emitters. In other cases, however, this approach is too simplistic, even
in the absence of direct emitter-emitter interaction [8].

Picturing two atoms as classical radiating dipoles, the fields that they emit will eventually
overlap and interfere. Depending on the relative phase of the fields, the interference can either
be constructive or destructive. The same is the case for ensembles of atoms. Even without
direct atom-atom-interaction, the emission from many excited atoms will overlap and interfere.
In 1956 Dicke pointed out that the collective emission from several two-level quantum emitters
can occur at different rates compared to individual emitters as the presence of other emitters
alters the environment into which a given emitter radiates [9]. Constructive and destructive
interference effects lead to enhanced or suppressed emission, famously known as super- and
subradiance respectively.

Superradiance effects have been widely studied for a wide range of emitters. The first
observation of superradiance in the optical domain was reported in a hot atomic vapor in 1973
[10]. An overview of early theoretical and experimental work can be found in the reviews by
Andreev, Emel’yanov, and Il’inskĭı [11] and Gross and Haroche [12].

Subradiance, the elusive flipside of superradiance, has not received as much attention, in
part due to the difficulties related to preparing emitters in collective states which couple only
weakly to light-fields if at all. Observations have been made in hot atomic vapors and with a
pair of ions [13, 14], and more recently in ultracold atomic ensembles [15, 16].

1



INTRODUCTION

In the past years collective atom-light interactions have been studied in an increasing
number of contexts, for example in disordered systems, such as small and dense cold atom
ensembles [17–19], ordered atomic ensembles [20], between molecules [21, 22], in dense hot
atomic vapors [23, 24], in alkali-earth-atoms with narrow-linewidth transitions [25], between
nuclei [26] and between trapped ions [27]. The recent progress in preparing large structured
arrays of individual atoms in optical tweezers or lattices [28–31] has inspired proposals to engi-
neer optical media consisting of emitters with well-defined spacing and geometry, that exploit
collective effects to achieve enhanced an optical response. Applications include absorbers and
mirrors formed by just a few tens of emitters in two-dimensional [32–36] and enhanced photon
storage in subradiant emitter chains [37, 38]. A first proof of principle of a subradiant mirror
has recently been demonstrated [39].

This approach of modifying the electromagnetic environment of the emitters through the
presence of other emitters is related to cavity electrodynamics, where the environment is
modified by placing an emitter inside a resonator, where its coupling to resonator modes is
enhanced by its mirror image [40, 41].

In analogy to the resonator, the number of optical modes with which emitters can in-
teract can be reduced by coupling the emitters to a waveguide. Examples include tapered
optical nanofibers, hollow-core fibers, integrated optical and even superconducting microwave
waveguides [42–52].

In the latter case, the emitters are not atoms, but superconducting qubits. More gener-
ally waveguide quantum electrodynamics can be realized with any quantum-emitter, such as
molecules, quantum dots, and color centers [53–56].

This thesis focuses on another kind of effective quantum emitter that is based on collective
excitation: Rydberg superatoms [57]. The superatom is made of N individual ultracold atoms
in a strongly confined ensemble which are coupled to a Rydberg state. The strong interactions
between Rydberg atoms lead to an excitation blockade that limits the number of possible
excitations to a single one that is collectively shared by all N atoms [58]. By coupling to the
Rydberg state in a two-photon Raman scheme, the Rydberg superatom becomes an effective
two-level system [59–63]. The limitation to a single collective excitation turns the superatom
into a perfectly nonlinear two-level system, similar to an individual atom.

Rydberg atoms have generally been highly successful tools for quantum nonlinear optics [64,
65]. They can be used to observe highly nonclassical states of light [66–69], and to implement
devices such as photon-photon quantum gates [70], single photon switches and transistors [71–
75], and single photon sources [76, 77]. Rydberg superatoms as discussed above have been
used to realize single photon absorbers, removing a single photon from a probe pulse [78].

This application is possible because the collective nature of the excitation leads to a strongly
enhanced coupling between the superatom and few-photon probe fields in the presence of a
strong control field. The existence of well-defined phase relations between the individual
constituent atoms leads to a strongly enhanced directional coupling to the single optical mode
of the probe field in the forward direction. Hence, the combination of the superatom and
the mode of the probe field effectively acts as a single quantum emitter coupled to a one-
dimensional directional waveguide [42]. The coupling strength between the superatom and
this effective waveguide is determined by the number of atoms contributing to the collective
state, scaling as

√
N . Given that N typically is on the order of 104, the emitter-waveguide

coupling is strong compared to many other systems. The directionality allows us to realize
chained systems of multiple superatoms interacting with the same waveguide by simply placing
multiple atomic ensembles into the path of a single probe field.

This thesis begins with a brief review of the theoretical background for collective effects.
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We discuss the collective states of many atoms sharing a single excitation as in the Rydberg
superatom. We also highlight how Rydberg superatoms can be treated in the language of
waveguide QED when they are formed in a trap.

Based on this theoretical discussion, we continue with a description of how we experi-
mentally realize the Rydberg superatoms in the form of ensembles ultracold rubidium atoms
trapped in optical dipole traps. The experimental setup allows us to realize multiple super-
atoms in series. Therefore, we analyze the collective dynamics of a multi-superatom system
where interaction between superatoms is mediated by the unidirectional emission from single
superatoms into the mode defined by the probe field.

While we predict effects of collective states of many superatoms coupled to the same field,
the Rydberg superatoms themselves are also formed by a collective excitation shared between
many emitters. Therefore, we experimentally investigate the internal dynamics of a single
superatom by considering the emission from the superatom after exposure to a driving field.
This emission depends on the collective state of the constituent atoms.

We expand the system to a chain of up to three Rydberg superatoms and demonstrate
that this system can be applied as a multi-photon subtractor when the system parameters
are optimized for this application: The subtraction relies on storage in a dephased state and
requires high dephasing rate.

Finally, we consider how to optimize the system parameters for the opposite regime, where
dephasing is minimal. In this regime we hope to implement a chain of Rydberg superatoms
as a cascaded quantum system.
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Chapter 2

Collective light-matter interactions

When describing systems of many atoms, it is often considered sufficient to treat all atoms as
being independent. However, this approach neglects that emitters influence and thus modify
the emission characteristics of each other, and as a consequence it does not always lead to
correct results. In 1954 Dicke demonstrated, that a single excited two-level neutron behaves
fundamentally different depending on whether it is alone or a second, unexcited, neutron is
nearby [9]. Furthermore, Dicke described how an ensemble of N emitters can emit with a
strongly modified and drastically higher emission rate compared to N individual emitters.
Dicke called this effect superradiance. Since the publication of Dicke’s seminal paper almost
70 years ago the collective effects of many identical emitters have been intensively studied.

The superradiance can be intuitively understood in a classical framework by treating each
emitter as an oscillating dipole with a fixed phase. When the small dipoles are oscillating in
phase, the emitted field is subject to constructive interference and the resulting response is
a stronger emission signal - superradiance. On the other hand, the dipoles can also oscillate
out of phase, which leads to destructive interference and weaker emission - subradiance. This
picture of an interplay between many small radiators may be instructive for imagining these
effects. In reality, the effects have a quantum origin and are caused by exchange of virtual
photons mediating dipole-dipole interaction between the emitters [79].

In the scope of this thesis, we will primarily be concerned with the case of a single excitation
shared collectively by N � 1 atoms. This regime has recently experienced a renewed interest
particularly in the years from 2006 and until today with extensive work from among many
others Scully and Svidzinsky [80–82], Friedberg and Manassah [83, 84], Kurizki [85], and
Agarwal [86].

To develop an intuition for the collective effects, it is instructive to consider a two-atom
system compared to a single atom, as we will do in the first section of this chapter. Next, the
introduction is extended to two two-level atoms and to a discussion of collective effects when
more than a single atom is considered. In particular, we consider how the exchange of virtual
photons can mediate emitter-emitter interaction and drastically change the behavior of many-
emitter systems for even few collective excitations. For instance, such collective excitations
can have enhanced coupling strengths to certain fields and strongly directional spontaneous
emission.

The enhanced coupling to certain modes makes the collective excitations discussed here
resemble waveguide systems. Therefore, we also shortly review of the dynamics of many
emitters coupled to waveguides. In particular we consider how a waveguide can mediate
emitter-emitter interactions even over long distances. It is important to note that there are
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COLLECTIVE LIGHT-MATTER INTERACTIONS

many effects which can be described as collective, and which give rise to modified emission
rate. For a discussion of terminology, we refer to [8] In this thesis, we focus exclusively on the
super- and subradiant collective states with few excitations shared between many emitters.

2.1 Two-atom collective states

The simplest system for observation of collective effects is a set of two coupled emitters. This
system has been studied in great detail [87–89]. See also, for instance, the introduction of ref.
[90]. In this section we briefly consider such a system as a basis for the further analysis.

Individually, the single atoms are described with the two states |g〉 for the ground state,
and |e〉 for the excited state, and the single atom is assumed to decay from |e〉 → |g〉 with
decay rate given by the natural linewidth Γ. This decay is described by the jump operator
σ = |g〉 〈e|. In the density matrix formalism for a single emitter, the decay can be described
by the density matrix element ρee following from the Optical Bloch equations [91]

ρee(t) = ρee(0)e−Γt (2.1)

ρgg(t) = 1− ρee(0)e−Γt (2.2)

ρge(t) = ρ∗eg(t) = ρge(0)e−
Γ
2
t. (2.3)

The last equation shows how any initial coherences also decay with Γ, and in particular how
the coherences are independent of the populations in the case of pure decay. This indicates
that coherence cannot be established in a decaying two-level system.

The decay of the system is described by considering the expectation value of the jump
operators [92]:

W (t) = 〈σ†σ〉 . (2.4)

If the system starts in the excited state, it emits with

W (t) = exp(−Γt). (2.5)

Next, we consider the case of two atoms. The dimensionality of the combined Hilbert
space is four, spanned by the pair states given by both atoms in the ground state, |gg〉, two
single-excitation states |eg〉 , |ge〉, and the doubly excited state |ee〉.

It is assumed that the atoms are far enough apart to ensure that they do not have over-
lapping wavefunctions. It is further assumed that they are stationary and coupled only via
radiation [87–89]. Finally, it is assumed that the atoms are much closer than the wavelength
of the transition |e〉 ↔ |g〉. In the absence of any coupling, the single-excitation states are
degenerate. However, there is a dipole-moment between the states

〈eg| ~D |ge〉 = 〈e1| ~d1 |g1〉+ 〈g2| ~d2 |e2〉 (2.6)

where ~D is the dipole operator of the full system, ~dj is the dipole operator on the jth atom,
and subscripts indicate the atom in question. This dipole moment results in a coupling, which
lifts the degeneracy. This is the quantum analogy to the classical interference of the radiated
fields introduced above. It can also be seen as an exchange of virtual photons causing the
single excitation to ”hop” between the two emitters.

6



2.1. TWO-ATOM COLLECTIVE STATES

Figure 2.1: The collective states of two atoms. a) Level scheme for two atoms with the
collective bright and dark state. b) Emission from two collectively excited atoms starting in
|ee〉 compared to the emission from two independent atoms.

With this interaction it is convenient to describe the two-atom system in a basis of collective
superposition-states,

|±〉 =
1√
2

(|ge〉 ± |eg〉), (2.7)

rather than the single-atom states. The same basis can be applied for non-interacting atoms,
but does not offer any advantage over the single-atom states.

For the interacting atoms, the interaction causes an energy shift of |+〉 and |−〉 relative
to the same states for non-interacting atoms with energy Ω12 as shown in figure 2.1. This
shift, called the collective Lamb shift, is in general present between collective states, and has
been measured in many different systems [23, 24, 26, 27, 50, 93]. In this thesis, however,
we determine the resonance frequency of interest experimentally based on spectroscopy of the
already shifted state, and therefore we will not consider the shift further [94].

When writing the new density-matrix elements in this basis, and assuming that the atoms
are close, we arrive [89]

ρ̇ee,ee = −2Γρee,ee, (2.8)

ρ̇++ = 2Γρee,ee − 2Γρ++, (2.9)

ρ̇−− = 0, (2.10)

ρ̇+− = −Γρ+−, (2.11)

with solutions

ρee,ee = ρee,ee(0)e−2Γt, (2.12)

ρ++ = (ρ++(0) + 2Γtρee,ee(0)) e−2Γt, (2.13)

ρ−− = ρ−−, (2.14)

ρ+− = ρ+−e
−(Γ+2iΩ12)t. (2.15)

7



COLLECTIVE LIGHT-MATTER INTERACTIONS

N-1 fold degenerate

 -fold degenerate

is there 
anybody out 

there? 

I think I'm 
stuck...

Figure 2.2: Illustration of the ladder system defined by Dicke. The superradiant ’ladder’ is
marked with a blue frame. Besides the Dicke superradiant states, the ladder system also
contains other states with modified decay rates. The ladder system is characterized by the
degeneracy of states [9]. Depending on the step in the ladder, these states may also feature
superradiant emission, but not as strong as the states in the Dicke superradiant ladder. The
figure is adapted from ref. [9].

These equations highlight that excitation to |−〉 is trapped, and that coherences between |+〉
and |−〉 cannot be introduced solely by decay. In addition, the coherences depend on the energy
shift Ω12, which again depends on the exact dipole-dipole interaction between the atoms.

From these equations it is seen that both the doubly excited state and the symmetric state
decays with rate 2Γ. The decay of |ee〉 can be intuitively understood as |ee〉 being two atoms
decaying independently. Clearly, this decay prepares the |+〉-state, but does not affect the
population in |−〉. The state |−〉 on the other hand does not decay, and therefore excitations
to this state are effectively trapped

The decay rate for a fully inverted system is given by the expectation value of all possible
decay channels,

W (t) = 2Γ(1 + 2Γt)e−2Γt. (2.16)

The super- and subradiance of |+〉 and |−〉 respectivly hold only for atoms with negligible
inter-atomic distance relative to the transition wavelength r � λ. In the case where the
atoms are further separated, the decay rates rates are modified depending on the inter-atomic
distance. This leads to a small but non-zero decay of the |−〉-state, which is then said to be
subradiant. As the atoms are moved further apart, the decays of |±〉 oscillate, being super-
and subradiant in turn [89].

When the atoms are further separated, the relative position of the atoms gives rise to
angular dependency of light emission, leading to suppression of emission in some directions
and enhancements in others [89]. The first observation of different decay rates as a function
of controlled inter-particle distance was made with two trapped ions [14].

8



2.2. N -ATOM SUPER- AND SUBRADIANCE

2.2 N-atom super- and subradiance

The results found for two two-level atoms can be extended to the situation of N atoms, which
we consider in this section. When the N atoms are all close relative to the wavelength of
their transition, r � λ, there exist strongly superradiant states, which decay much faster than
corresponding radiant states for N independent atoms, depending on the number N [9].

Applying the methodology of the two-atom system analysis, one can rewrite the full N -
atom system as a state |a1a2 · · · aN 〉 where aj is the state of the jth atom which is either |e〉 or
|g〉. This leads to a system with dimension 2N for which the dipole-coupling terms can again
be calculated. The fastest decay happens for a symmetric state with N/2 excitations. In this
case, the decay is W (t) ∼ N2 [9].

Figure 2.2 illustrates the ladder-system introduced by Dicke in analogy to the spin-triplet-
singlet system of two spin 1/2 particles. The symmetric states make up an N -let ladder
where decay is superradiant. Other ladders of states with lower degrees of symmetry can also
be identified, depending on their degeneracy, and excitations to these states are effectively
trapped at the lowest step of their respective ladder.

It follows that a symmetric Dicke state is decoupled from the other states with lower
symmetry but same number of excitations, and that such a symmetric state decays only
within its ’own ladder’ as shown in figure 2.2. The fully excited state itself is not superradiant,
but every step below it is, and as the system decays from the fully inverted state, quantum
correlations build up between the atoms [12, 79]. As a consequence, the system radiates faster
and faster until the number of excitations is N/2. Therefore, the signature of a superradiant
system with N � 1, which starts in the fully inverted state, is to first decay normally, but
then, after a delay time depending on the number of atoms, emit a strong pulse [79]. The
exact pulse height is also determined by N .

The superradiant effects are also present for atoms in an extended ensemble. This case
was also considered by Dicke, and has in itself received a lot of attention. A large ensemble
of collectively interacting atoms has directional superradiant emission [19, 25, 95, 96]. In
the case of an elongated medium, for instance, the emission is primarily along the long axis.
Imagining a system of many small dipoles, this can be understood as building more constructive
interference along a longer axis [11, 89, 97].

The superradiance is caused by the appearance of correlations between the emitters, carried
by exchange of virtual photons. These correlations drop off with distance, and the correlation-
length is eventually determined by the uncertainty in the excitation-wavevector. [11].

2.2.1 Single photon superradiance

While the most superradiant state is the half-inverted one, where correlations have built fully
up, every step in the ladder of symmetric states decays with enhanced decay rate. The only
exception is the fully inverted state, which decays with NΓ similar to N independent atoms.
In this section we describe the superradiant emission of a single photon from an ensemble
of N � 1 emitters sharing a single excitation. The superradiant emission from this state is
called single photon superradiance [43, 98, 99]. First we consider the Dicke state, and then we
consider the regime where the N emitters have a spatial distribution such that the excitation
contains the phase of the exciting field at each emitter.
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Single 
collective 
excitation

Figure 2.3: N independent atoms sharing a single excitation can be described by a set of
N orthogonal collective states. One state, |W 〉, couples to the ground state with enhanced
coupling strength to |G〉 and driving fields. The coupling strength depends on N . The N − 1
other states are not coupled to |G〉, but depending on the system in question, they can be
coupled to |W 〉, as is the case for the timed Dicke state. This corresponds to the second-lowest
step in the ladder shown in figure 2.2.

This single excitation Dicke state is

|W 〉 =
1√
N

N∑
j=1

|gg · · · ej · · · g〉 . (2.17)

Considering the coupling between this state and the ground state |G〉 = |gg · · · g〉, we find that

〈G| ~D |W 〉 =
1√
N

N∑
j=1

〈g| ~d |e〉 =
√
N 〈g| ~d |e〉 . (2.18)

Compared to a single atom, the N atoms couple to the collective ground state with a coupling
that is enhanced with a factor

√
N compared to N independent atoms where one atom is

excited. This enhanced coupling is also present in the decay. This state thus decays with NΓ,
which is N times faster than a single excited atom.

While the state in equation 2.17 describes the symmetric superposition of a single atom
being excited and the rest being in the ground state, an N atom system with a single excitation
also has N −1 other superpositions with lower degree of symmetry, |Dn〉. This is illustrated in
figure 2.3 These states are orthogonal to each other and orthogonal to the states of equations
2.17, such that

〈W |Dn〉 = 0, 〈Dn|Dm〉 = δnm. (2.19)

Given the orthogonality of the states, the dark states are also decoupled from the light, and
as the two-atom |−〉-state, the N − 1 dark states have zero decay-rate. Therefore, excitation
to one of these states is trapped.

The enhanced decay from the state described by equation 2.17 is only true for the special
case where the atoms are indistinguishable, stationary, and non-interacting. For extended
ensembles of atoms, the exact geometry has to be taken into account, and the state given in
equation 2.17 may have completely different decay dynamics.

In the case of an extended atomic ensemble it is more realistic to consider a state of a
single excitation prepared by an incoming plane wave. This state must take the wave-phase
experienced by the different atoms into account [80].

10
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We assume that the excitation is imprinted with an interaction Hamiltonian of N two-level
atoms interacting with a field with wave-vector ~k0 given by

Hint,k0(t) = h̄g0

N∑
j=1

(
ei
~k0·~rje−i(ω−ω0)tσ†jak0 + h.c.

)
, (2.20)

where g0 is the coupling strength of the light in the mode k0 to the single atom, ~rj describes the

position of the jth atom, and σ†j is the creation operator of an excitation of this atom. ak0 is the

photon annihilation operator of a photon in mode ~k0, and ω0 and ω are the resonance angular
frequency of the driven transition and the angular frequency of the driving field respectively.
In this equation, we assume a scalar field.

We now consider the time-evolution of a state with all atoms in the ground state under
this Hamiltonian. We assume that a single atom couples weakly with the light, and that only
a single photon is absorbed. With these assumptions, we arrive at a collectively excited state
that is a symmetric superposition of the jth atom being in an excited state and the remaining
atoms being in the ground state:

|W 〉 =
1√
N

N∑
j=1

ei
~k·~rj |g, g, · · · , ej , · · · , g〉 . (2.21)

This state is often referred to as the ’timed Dicke state’. The emission properties of this state
were discussed in ref. [80], and the state was first called a timed state in ref. [100]. Here we
follow the same steps of ref. [80] to see how the timed Dicke state has enhanced emission into
the mode which imprints the excitation.

The state described by 2.21 has the same enhanced decay as the symmetric single-excitation
Dicke state of closely spaced atoms described by equation 2.17. Both states also features an
enhanced coupling to a resonant field which is a factor

√
N stronger than N independent

atoms. However, the phase factors in equation 2.21 become important when the spontaneous
decay is considered. Contrary to the state of equation 2.17, the timed Dicke state contains
information about the wave which caused the excitation, and as long as the phases remain
coherent this state will radiate back into the mode that created it.

This effect is seen by considering the interaction Hamiltonian from equation 2.20 summed
over all modes,

H(t) =
∑
~k

Hint,k(t). (2.22)

The resulting time evolution under this Hamiltonian is

UH(t) = T exp

(
−1

h̄

∫ t

0
dt′ H(t′)

)
=

N∏
j=1

U
(j)
H . (2.23)

Here T is the time ordering operator. UH(t) can be described by the single-atom evolution

where U
(j)
H describes the time evolution for one atom.

The single atom evolution can be described by the Weisskopf-Wigner treatment.

U
(j)
H = γ†jσj , (2.24)

11
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where σj works on the jth atom, and

γj† =
∑
~k

g~k
ω~k − ω + i

2γ
a†~k

(2.25)

is the radiation operator which creates a photon [80, 91]. γ is the Weisskopf-Wigner sponta-
neous emission rate.

The time evolution of equation 2.21 can be considered by applying the operator of equation
2.23. In particular we can consider the decay from |W 〉 to |G〉 as a function of time and assume
no driving field: The photonic state is |0〉.

〈G|UH |W 〉 |0〉 =
1√
N

N∑
j=1

ei
~k0·~rjγ†j |0〉 =

1√
N

∑
~k

g~k
ω~k − ω + i

2γ
|1~k〉

N∑
j=1

ei(
~k0−~k)·~rj . (2.26)

Assuming that the atomic density is high, the summation over all positions can be replaced
by an integral:

N∑
j=1

ei(
~k0−~k)·~rj ' N

V
(2π)3δ(3)( ~k0 − ~k), (2.27)

where V is the volume of the atoms. Combining this with equation 2.21 we arrive at

〈G|UH |W 〉 |0〉 '
√
N

V

∑
~k

g~k
ω~k − ω + i

2γ
|1~k〉 δ

(3)( ~k0 − ~k). (2.28)

Equation 2.28 demonstrates that the state in equation 2.21 emits spontaneously only into the
same direction as wave which made the excitation in the first place. Note that this result is
independent of the geometry of the atomic distribution. The quality of the directionality of
timed Dicke state depends on how large N is [101].

In ref. [80] it was suggested to use a heralded single photon-scheme to ensure that an
atomic ensemble contains only a single excitation. However, there are other ways of ensuring
this. One way is to use some sort of blockade mechanism to truncate the excitation ladder,
such that only the first step state of the superradiant ladder can be reached. We will return
to this in the next chapter and discuss how such a truncation is possible with the Rydberg
blockade mechanism.

The single photon superradiance discussed above is sensitive to any effects disturbing or
destroying the correlations between the atoms. Such effects include atomic motion and direct
atom-atom interactions [87, 102, 103]. This sensitivity is apparent in the phase factor of
equation 2.21. Any effect which causes changes in the phase factors leads to dephasing of the
system. We will return to this point in chapter 5.

As the symmetric Dicke state of equation 2.17, the timed Dicke state of equation 2.21
also has N − 1 other dark sister-states. However, in the timed case these dark states are not
completely decoupled from the bright state. For a random distribution of atoms, the exchange
of virtual photons gives rise to coupling between the subradiant and superradiant states. This
coupling leads to a transfer of population from the emitting state to the non-emitting states,
since the timed Dicke state given by equation 2.21 is not an exact eigenstate of the interaction
Hamiltonian [104]. This is illustrated with the couplings in figure 2.3.

This transfer in turn leads to a drop in emission [82, 84]. The severity of this effect depends
on the exact system; in most cases the effect gives rise to only minor effects, or washes out
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(a) (b)

Figure 2.4: Different types of waveguides - determined by the emitter coupling. a) bidirectional
waveguide allows the emitters to emit in both directions. b) chiral waveguide allows only
emission into one direction.

due to other decoherence mechanisms. Therefore, in the limit N � 1 the coupling into these
states can for most purposes be treated as a single decay term [85, 100]. However, coupling
to subradiant states due to the exchange of virtual photons does modify the behavior of the
superradiance of equations 2.17 and 2.21 [82, 83].

Until now we have only discussed the decay out of a system of N emitters prepared in a
coherent, collective state. When the same system is subject to driving, it features additional,
rich dynamics [105]. In case of resonant driving, the N atom collective state features transfer
of population out of and back into the bright state [106, 107].

2.2.2 Collective effects in quantum technology

The superradiance and subradiance mechanisms discussed above are not only of interest for
fundamental understanding of collective interaction of identical systems. They are also highly
relevant in systems for quantum communication, information processing, and simulation, since
the mere presence of nearby systems causes changes in the dynamics of a quantum system. The
collective interaction and coherence is sensitive to dechoerence from other sources, but as the
control over individual quanta for applications in quantum communication and computation,
it becomes increasingly important to take these effects into account [108].

In the context of future quantum technology the collective effects can also be utilized to
realize strong coupling and directionality of emission as seen in the discussion above, and this
may be promising for future applications for instance in combination with ordered atomic
geometries where the interaction between light fields and such ordered arrays can be tuned
by varying the lattice spacing [32, 34, 38, 109]. Recently, a subradiant mirror consisting of a
single layer of optically trapped atoms has been demonstrated [39]. There are corresponding
theoretically proposals for using Rydberg atoms in these arrays because of the long-range
Rydberg-Rydberg interactions allow long-range interactions between array-atoms [110, 111].

2.3 Waveguide QED

The above discussion shows how systems of many identical emitters behave collectively, and
in particular how these collective states can have strong directional emission as it is the case
for the timed Dicke state described by equation 2.21. This state of a single excitation shared
between many atoms emits its excitation preferably back into the mode which wrote the
excitation in the first place. Along these lines it is meaningful to consider systems which
already have strong enhancement of coupling to specific system modes such as emitters coupled
to cavities or waveguides.

Waveguide-emitter-systems are generally characterized by a waveguide coupling efficiency
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defined as the ratio between emitter emission into the waveguide and into other modes. Thus,
a single two level atom coupled to a waveguide, which emits into the waveguide with rate κ
and out of the waveguide with γ0 has a waveguide coupling efficiency

β =
κ

κ+ γ0
. (2.29)

The state of the art is above 0.99 with 10 emitters for superconducting transmon qubits and
0.99 for quantum dots for a single dot in a cavity [112]. These impressive numbers have to
be considered relative to the number of emitters, to the operation wavelength, and to the
character of the waveguides.

Systems of many individual atoms coupling to nanofibers or solid state waveguides offer
a different approach to waveguide-coupled systems: While individual emitters couple weakly,
many emitters can be coupled simultaneously [46–48].

The β of equation 2.29 can be compared to the figure of merit in cavity QED,

g2
0

κγ0
. (2.30)

Here, the coherent coupling inside the resonator, given by g0 is compared to both parts of
photon loss: The loss through the cavity mode, κ, and the loss into any other direction, with
γ0. In the strong coupling regime, g0 is the dominating time-scale, and fully coherent Rabi
oscillations can be observed for even single photons. This regime can never be reached in
waveguide QED, since any single photon can only be re-emitted and thus lost.

The term waveguide covers a broad palette of physical structures guiding waves of some
sort, and has a well-developed theoretical framework for discussing the coupling between quan-
tum emitters and single propagating field modes. We can identify different types of waveguides,
based on the directionality of emission into the waveguides: Bidirectional waveguides which
allow emission into both direction, and chiral waveguides which allow only emission in one
direction. These two types of waveguides are illustrated in figure 2.4 [42].

In this thesis, there is no actual waveguide in place, but clear parallels can be drawn
between the free space systems which will be discussed in this thesis, and waveguide systems,
and we will make use of this to discuss the applicability of Rydberg superatoms for quantum
applications.

There are different ways of approaching the description of a field in a waveguide interacting
with waveguide-coupled emitters. One approach is to integrate out the field and treat the atoms
as a spin-system with couplings coming from the field and the directionality of the waveguide.
In this section and the following chapter we take this approach [94, 113]. Another approach is
to consider the scattering at each atom given by the scattering matrices. This approach allows
the considering of non-coherent states [114].

2.3.1 Waveguide mediated emitter-interaction

Now, we consider how a single atom behaves in the case of coupling to a waveguide. In the
simplest case, a single, excited atom coupled to an empty waveguide is subject to different
decay rate depending on the waveguide type. An atom coupled to a waveguide with

√
κ to a

chiral waveguide will decay with rate κ, while it decays with 2κ in the case of a bidirectional
waveguide. This can be intuitively understood as the atom having one or two decay channels
available.
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Note that in this case, the coupling strength given by κ determines the coherent atom
evolution if the atom is driven with an input field, but κ also determines the incoherent decay.
This is an important point which will be stressed again in section 3.3.

If a single atom is coupled to the waveguide, this also modifies the transmission through
the waveguide.

When more than one atom is coupled to the waveguide, the emitted photons from on atom
mediate an effective interaction when they are absorbed by another atom. The same holds for
the virtual photons which mediate the interaction discussed in sections 2.1 and 2.2.

However, for atoms coupled to a waveguide these virtual photons are not limited to a
distance determined by the dipole-dipole interaction and can travel along the waveguide and
mediate interaction between even distant atoms [46]. The simple picture discussed here fails,
however, when it becomes necessary to take retardation effects into account.

While it is assumed in most works on superradiance that direct atom-atom interaction
is negligible, and that atoms are close enough that they can interact via exchange of virtual
photons, there is no distance-requirements for a waveguide because all atoms coupled to the
waveguide are coupled to the same optical mode, which can transport the information between
the atoms. In particular for a bidirectional waveguide the light has to pass every atom before
it can escape the waveguide. On the other hand, when the atoms are not randomly distributed
along the waveguide, it is possible to tailor the response of the field when the atoms are spaced
relative to the wavelength of the field propagating in the waveguide [47, 115].

Collective states in a waveguide

In this section, we paraphrase the detailed calculation of the processes discussed above. More
details can be found in [116]. First, we consider two atoms coupled to a waveguide. It is
assumed that the two atoms couple to the waveguide with the same coupling strength, and
are stationary and located at positions x1 and x2.

Again, we assume that the system is not driven. Then, the two-atom system evolution can
be described by a master equation of the form

∂ρ

∂t
=− i[J12σ

+
1 σ
−
2 + J21σ

+
2 σ
−
1 , ρ] + κ[D[σ−1 ]ρ+D[σ−2 ]ρ]

+ κF12(σ−2 ρσ
+
1 −

1

2
{σ+

1 σ
−
2 , ρ}) + κF21(σ−1 ρσ

+
2 −

1

2
{σ+

2 σ
−
1 , ρ}), (2.31)

where J12 describes the coherent coupling between the two atoms caused by exchange of virtual
photons. κ is the decay rate of a single atom into the waveguide. As discussed above, κ depends
on the type of waveguide.

The Lindblad-like terms Fjk(σ
−
k ρσ

+
j −{σ

+
j σ
−
k , ρ}/2) handle the collective decay of the two

atoms. Fjk is a dimensionless parameter determining how correlated the decay of the two
atoms is. If Fjk 6= 0 there will be different decay rates of the states of the system, and the
system will have one state decaying faster than Γ and one state decaying more slowly.

Fjk and J12 both depend on the type of waveguide. The bi-directional waveguide resembles
the free-space situation discussed previously in the case where the two atoms are close together.
The parameters are

J12 = κ sin(k|x1 − x2|), F12 = cos(k|x1 − x2|). (2.32)

In the situation where x1 = x2, J12 vanishes, such that there is no coherent coupling between
the two atoms. This is the situation discussed for two free-space atoms close together aligned
along some quantization axis. In this situation, only the correlated decay survives.
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In the chiral case, on the other hand, the field can only propagate in one direction, and
therefore the two parameters J12 and F12 cannot be rewritten as trigonometric functions.

J12 = −iκ
2

sgn(x1 − x2)eik(x1−x2), F12 = eik(x1−x2). (2.33)

Equations 2.32 and 2.33 shows that coupling the emitters to a waveguide turns any spatial
dependency of the couplings into phase-dependency. Thus J12 and F12 are functions of the
phase difference the light acquires while traveling between the atoms, rather than dropping off
over distance.

For the two cases studied here, we can define two different types of states in analogy to the
states discussed in the previous section: The Dicke super- and subradiant state, and a bright
and a dark state, corresponding to the timed Dicke states prepared by a plane input wave

|W 〉 =
1√
2

(
σ+

1 + σ+
2 e
−k0(x1−x2)

)
|G〉 , |D〉 =

1√
2

(
σ+

2 − σ
+
1 e
−k0(x1−x2)

)
|G〉 , (2.34)

|±〉 =
1√
2

(
σ+

1 ± σ
+
2 e
−i arg(F12)σ+

2

)
|G〉 . (2.35)

Note that the one-dimensionality of the problem is taken into account in the exponential. For
certain conditions the two states coincide, but not for in all situations despite the apparent
similarity.

For two atoms coupled to a bi-directional waveguide and being close together the states
|W 〉 and |+〉 overlap, and decay with 2Γ while |−〉 and |D〉 has decay rate 0. From equations
2.32 we see that the states are completely decoupled, J12 ' 0. The e−2Γt of a system starting
in |W 〉 is shown in figure 2.5.

In the other limit, where the atoms are far apart, a system prepared in |W 〉 decays for
short times as

ρww(t) ≈ 1− 3

2
κt+O(κ2t2) ' e−

3
2
κt (2.36)

while the population in the dark state changes as

ρDD '
1

8
(κt)2 +O(κ3t3). (2.37)

This modified decay rate can be understood as being caused by coupling to a not-collective
decay channel in the backward direction [116]. For long times, the bright state decays much
more slowly than the ideal superradiant case due to the population transfer into and out of
the dark state.

In the case of a chiral waveguide where propagation is only allowed in one direction, the
decay rate of a single atom is given by κ = γ. When two atoms are coupled to this waveguide,
|W 〉 and |+〉 coincide perfectly [116]. Again, |W 〉 decays to |G〉 with 2κ and |D〉 does not
decay directly to |G〉 at all.

However, |W 〉 and |D〉 are still coupled together. This is seen from J12 in equation 2.33.
This coupling leads to a modified decay behavior. Thus, considering the density matrix ele-
ments for the system prepared in W , they are given by

ρWW (t) =
1

4
e−κt(κt− 2)2 (2.38)

ρDD(t) =
1

4
e−κt(κt)2. (2.39)
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Figure 2.5: Population in the bright and dark states of two two-level atoms coupled to a chiral
waveguide. The system starts in the bright state. a) shows the populations plotted on a linear
scale. b) shows the populations in a semi-logarithmic plot.
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Figure 2.6: Emission from two inverted atoms coupled to a chiral waveguide, compared to
emission from two free-space atoms as shown in figure 2.1. a) is shown with a linear scale, and
b) is in a semi-logarithmic scale.

For short times, the population in the bright state does indeed decay with rate ≈ e−2κt.
Notably, the population in the bright state drops to zero at κt = 2. At this point, all pop-
ulation has been transferred to the dark state, and since the photon emission is proportional
to the population in the bright state, it thus also falls off to zero at this point in time. This
corresponds to the excited population being stored or hidden in the in the dark state. The
populations are illustrated in figure 2.5 and compared to the result for two atoms in free space,
each decaying with rate Γ = κ: The population in |W 〉 decays as e−2κt.

In the case of a fully inverted system, the intensity goes as [117]

I(t) ∼ 10e−κt − 6κte−κt + κ2t2e−κt − 8e−2κt (2.40)

This situation is shown in figure 2.6 a) and b).
Figure 2.6 a) shows that the deviation between the emission from two free-space atoms

and two atoms coupled to a chiral waveguide are starting in the fully inverted state is initially
small, but figure 2.6 b) which shows the same as a) but on a semi-logarithmic scale highlights
that the emission behavior is fundamentally different: The chirally coupled atoms are expected
to exhibit a dip in emission corresponding to a population transfer from the bright state to

17



COLLECTIVE LIGHT-MATTER INTERACTIONS

the dark state similar to the one seen in the population shown figure 2.5.
However, this dip is challenging to observe since it only occurs at a low photon rate. We

will discuss this further in section 3.7
Pausing for a minute and comparing these results to the results discussed for two atoms

in free space. The results found for the bidirectional waveguide with closely spaced atoms
are similar to the free-space case. However, the results for the chiral waveguide are in stark
contrast to the free-space two-atom-case discussed previously.

The directionality of emission, which leads to the mixing between the bright and dark
state of the two waveguide-coupled atoms, gives rise to a completely different dynamics, which
features a true drop-off of emission, and a revival. This behavior is caused solely by the
waveguide limiting the emission to one direction and thereby mediates coupling between the
two atoms [117].

2.3.2 Many emitters coupled to a waveguide

The above discussion can be extended to N emitters in a waveguide. In this situation the
set of dark states has size N − 1, and due to the waveguide these states couple to each other
and to the prepared bright state. Here we consider the decay of a single collective excitation
shared between N waveguide-coupled atoms. Here we in particular follow [116].

In a bidirectional waveguide this decay depends on the exact relative distribution of the
atoms. Thus, different limits have to be considered. In the limit where the atoms are spaced
closer than one wavelength, the single photon superradiance is recovered. In the other limit,
where the atoms are distributed on a much larger scale than the wavelength, but N � 1
such that the atom distribution is smooth over length-scale set by the wavelength, the phase
difference between the atoms becomes important again. In this limit, one finds a similar
dynamic as for two atoms coupled to the waveguide, and for N atoms in free space emitting
collectively: The coupling to non-emitting states gives rise to a population transfer from the
bright state, and thus a drop in emission. This drop is followed by revivals of emission as the
population is transferred back into the bright state [82]. The exact position of the minima
is given by the atom-distribution. Thus, ordered atomic arrays coupled to waveguides are a
platform with many options for tailoring light-matter interaction.

If the waveguide is chiral, the directionality makes the behavior of the collective excitation
N emitters prepared in a timed state independent of the exact position of the emitters. The
probability of finding the system in the bright state goes as

PW (t) =
1

N2
e−κt[L

(1)
N−1(κt)]2, (2.41)

where L
(1)
N−1(x) is the associate Laguerre polynomial.

As in the case of two atoms this state decays as e−Nκt in the beginning. When longer times
are considered, the population in the bright state features a series of revivals corresponding to
coupling between the bright state and the dark states of the system. For intermediate times,
1� Nκt� N2, the shared excitation decays with an overall algebraic behavior

PW (t) ∼ 1

(Nκt)3/2
(2.42)

This decay is eventually bounded by the single-atom decay with κ for times κt� N .
Interestingly, algebraic decay of the shared excitation found in the chiral waveguide is also

found for bidirectional waveguides as N →∞.

18



2.3. WAVEGUIDE QED

Thus, the collective dynamics seen for free space atoms are also observed for emitters
coupled to waveguides, however, the introduction of waveguide coupling allows the emitters
to be spatially distributed while still displaying collective behavior [118].

However, this behavior does not require a physical waveguide. Any system featuring direc-
tional emission is expected to feature such coupling between bright and dark states. Following
this line of thought, the directionally emitting systems discussed in the previous section are
interesting candidates for the realization of cascaded quantum systems due to the strong cou-
pling to a driving field and reemission into this same field. In the following chapter, we discuss
how to implement such systems with Rydberg states.
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Chapter 3

Rydberg superatoms

In the previous chapter, we discussed how ensembles of two level atoms excited with even
few photons can exhibit interesting properties in terms of directed emission and drastically
modified coupling and decay rates.

These enhanced coupling rates are crucial to realize single photon control but rely on
precise state preparation and control of the number of collective excitations. To realize this,
we use the Rydberg blockade mechanism, which limits the number of excitations within a
given volume and allows the creation of Rydberg superatoms. The superatoms are single
collective excitations to a Rydberg state shared between many emitters. This chapter initially
provides in section 3.1 a discussion of Rydberg physics for single Rydberg atoms. In section
3.2 the interactions between multiple Rydberg atoms are considered, and we discuss how these
interactions can be used to realize the collective states considered in the previous chapter,
in particular to realize Rydberg superatoms. In section 3.3 we give a theoretical model of a
Rydberg superatom, and we discuss the predictions of this model.

The Rydberg superatoms are realized experimentally with ultracold atoms. The experi-
mental setup for this is described in section 3.4, and in section 3.5 we consider how to create
one, two, or three Rydberg superatoms. In section 3.5.2 we review previous results measured
with a single Rydberg superatom. Finally, in section 3.7 we analyse the expected behavior of
a system with multiple superatoms chained after each other, following the discussion given in
chapter 2.

3.1 Rydberg states

Rydberg states are highly excited atomic states, where at least one valence electron has a
principal quantum number n > 10 − 20 1. In the rest of this thesis we work with Rydberg
states having a principal quantum number n > 100. The large principal quantum number of
these Rydberg atoms alter several properties compared to the ground-state atoms, including
physical size, binding energy, lifetime, and polarizability. These scalings are summarized in
table 3.1.

Figure 3.1 a) shows the energy levels for Rubidium, which is the element used throughout
this thesis. The direct transitions to the Rydberg P-states from the ground-state lies in the
UV, and are very weak as seen from the n−3/2-scaling of the dipole matrix element in table
3.1.

1The exact designation where Rydberg states begin, and low-lying states end is ambiguous.
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Table 3.1: Scaling of important properties of Rydberg atoms with principal quantum number
n [119], adapted from ref [120].

Property Scaling with n 87Rb, 100s

Wavefucntion radius n2 13810 a0

Polarizability n7 −6.197 GHz/(V/cm)2

Binding energy n−2 1450 meV

Transition dipole matrix element n−3/2 From 5P , 0.0047 e a0

Figure 3.1: Rubidium level scheme and abstracted three-level system on and off resonance.
a) Rubidium energy levels. The transition |g〉 = |5S1/2, J = 1/2〉 to a Rydberg state |r〉 =
|nS1/2, J = 1/2〉, with n ≈ 100, via the intermediate state |e〉 = |5P3/2, J = 3/2〉. b) and c)
show the three level system of a) schematically. The transitions are driven with two fields, the
probe field with Rabi frequency ΩP , and the control field with Rabi frequency ΩC . The two
fields are detuned from single photon resonance with ∆ and δ respectively. The intermediate
state decays with Γ0. c) shows how in the limit where ∆ � ΩC ,ΩP but δ −∆ ≈ 0 the state
|e〉 can be adiabatically eliminated, yielding a two-level system with effective Rabi frequeny
and decay as described in the main text. This resulting two-level system is shown in d).

To increase the coupling strength, and to avoid the UV-regime, we address Rydberg states
via a two-photon process as illustrated on figure 3.1 a). In our case we use excitations from
|g〉 = |5S1/2〉 to a Rydberg state |r〉 = |nS1/2〉, n = 111, via the intermediate state |e〉 =
|5P3/2〉. The excitation levels are shown schematically in figure 3.1 b) and c). The transitions
are driven by a weak field between |g〉 and |e〉, called the probe field, and a strong field
between |e〉 and |r〉, designated the control field. The two fields are shown in figure 3.1 with
Rabi frequencies ωp and Ωc respectively. This type of scheme allows us to use a quantized
probe field and a strong control field to couple to the Rydberg states, which is possible, because
we probe 5S → 5P and can benefit from this strong transition.

We usually work far-off single photon resonance where it is more likely to drive a two-
photon Raman transition than a single-photon transition. We call this regime the Raman
regime. In general, adiabatic elimination can be applied for a three-level system as the one
sketched in figure 3.1 c) in the limit ∆� Ωc,Ωp, and the dynamics can be described using an
effective two-level system [91, 121]. This is illustrated in figure 3.1 d). In this limit, the two
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Figure 3.2: Susceptibility (top row) and absorption (bottom row) of a three level system as
the ones shown in figure 3.1 with the control field on and off resonance as a function of probe
detuning ∆. a) and e) show the situation for δ = 0. b) and f) shows the situation for δ = 10,
and c) and g) show the situation for ∆ = 100. Note the scale difference between the different
plots.

photon process has an effective Rabi frequency of

Ωeff =
ΩpΩc

2∆
, (3.1)

and an effective wave vector

~k = ~kp + ~kc. (3.2)

Assuming the Rydberg lifetime to be long, i.e., assuming that the Rydberg decay rate can
be neglected, the effective spontaneous decay rate from the excited state will depend on the
intermediate-state decay rate Γ0 as

Γ = Γ0

(Ω2
c + Ω2

p)

4∆2
. (3.3)

In this case, the description of multiple two level atoms given in chapter 2 can be applied.
The adiabatic elimination works only in the limit where ∆ � ΩC ,Ωp. Generally, we can

calculate the susceptibility of the 3-level systems of figure 3.1 b) and c) using the density matrix
formalism introduced in chapter 2. Besides the Raman regime where the system resembles a
normal two-level-system, there is a different regime when the detuning is small as shown in
figure 3.1 b).

In this regime with small detuning we find a phenomenon known as electromagnetically
induced transparency EIT2. EIT can be understood as destructive interference of the absorp-
tion paths from the ground state to the two dressed excited states, where the dressing arises
from the control field [122].

2Depending on the relative strength of the fields we may also speak of Autler-Townes-splitting, but this will
not be covered further in this thesis.
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Atom 1,   Atom 2        Atom 1, 2

Figure 3.3: Rydberg blockade illustrated. a) Rydberg pairstate energies. The color-code shows
the admixture of other pairstates to the |111S1/2, J = 1/2〉 |111S1/2, J = 1/2〉-state for short
distances. The values are calculated as described in [125]. b) shows a schematic drawing of
the same effect. Two atoms far separated can be independently excited to Rydberg states.
When the atoms are brought close together, however, the Rydberg interaction shifts the doubly
excited state out of resonance with the driving field. The single-excitation state is now shared
between the two atoms, which couple with an enhanced coupling strength.

On single photon resonance the probability of finding the system in the intermediate state
|e〉 vanishes in the limit Ωp � Ωc . This is seen by considering the linear susceptibility χ of
the three-level system of figure 3.1, which describes the field-response in the steady state limit
[122].

When the two field frequencies are in resonance with the atomic transitions, the interference
appears as full transmission of the probe field. The linear susceptibility χ is plotted in figure
3.2 a), b), and c) as a function of the probe detuning ∆, and the transmission is shown in
figure 3.2 d), e), and f) for different values of δ. While the EIT medium is transparent to the
probe field, the probe field propagates through the medium with a strongly modified speed.
This follows from the sharp slope of the real part of χ plotted in figure 3.2. Thus, EIT has
been used to create extremely slow light with v = 10× 10−7 c [123]. In this limit it makes
sense to describe a photon propagating through an EIT medium as a quasi-particle formed
by a superposition of the light field and polarization of the medium, also known as slow light
polaritons [124]. Other effects can be achieved when an EIT system is tuned by varying the
detuning of the two fields off single-photon resonance as shown in figure 3.1 b) to c) leading
to the behavior shown in figure 3.2 b) and f).

Moving even further from resonance, we return to the Raman regime as shown on figure
3.1 c). In figure 3.2 c) and g) one sees how the susceptibility feature changes, resemble that
of a resonant two-level system except for a sign in the real part of susceptibility.

3.2 Interacting Rydberg atoms

The above discussion of light-matter interaction in Rydberg atoms holds for the case of no
interaction between Rydberg states and for the case when there is never more than one exci-
tation. The situation changes drastically when more than one Rydberg atom are present. The
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3.3. COLLECTIVE RYDBERG EXCITATION

high polarizability of Rydberg atoms shown in table 3.1 makes Rydberg atoms very sensitive
to excitations in their vicinity. Consequently, the presence of a Rydberg atom leads to a shift
of the Rydberg states for neighboring atoms. An example of this is shown in figure 3.3 a) and
schematically in figure 3.3 b).

A range of different types of Rydberg-Rydberg interactions occur, depending on the Ryd-
berg states in question and the distance between the excited atoms. In the remainder of this
thesis, our focus will be on Rydberg excitations to single S-states in dilute atomic clouds with-
out any applied electric fields. For this subset of Rydberg excitations the resulting interaction
at the relevant distances is of the van der Waals type. This interaction scales with the princi-
pal quantum number as n11, and it is proportional to 1/r6 as illustrated in figure 3.3. In this
regime, one Rydberg excitation shifts the energy levels of the surrounding atoms as illustrated
in figure 3.3 a) and b). This shift of energy levels leads to an exponential suppression of more
excitations within a volume defined by the Rydberg blockade radius rb around the existing
excitation [126–131]. The Rydberg blockade radius is given by

rb = 6

√
C6

2h̄ΩEff
, (3.4)

where ΩEff is the effective Rabi frequency of equation 3.1. The Rydberg blockade is schemati-
cally shown in figure 3.3 b. It is important to notice that the Rydberg blockade may work for
a specific state, but that other Rydberg states may not be blockaded at the same distances,
they may even be shifted into resonance with a driving field as indicated in figure 3.3.

Further, highly excited Rydberg electron(s) that are far separated from the core can scatter
with ground state atoms in the vicinity, leading to the formation of Rydberg molecules [132,
133]. For principal quantum number n > 80 the molecule formation leads to a red-shift and
a line-broadening of the Rydberg resonance which scales with atomic density [134]. Thus,
increased atomic density leads to decoherence in case of large n, even for single Rydberg
excitations.

For the experiments discussed in the following, the simple single-state van der Waals block-
ade is sufficient. However, the Rydberg-Rydberg interaction offers a variety of further tuning
options and different scalings through the choice of involved states. A very thorough intro-
duction is given in ref. [125, 135].

The Rydberg-Rydberg interactions also modify the optical response when the driving fields
not on single-photon resonance. Here, as elsewhere, the response is highly nonlinear. In the
regime shown in figure 3.2 b) the propagating polaritons can experience both dissipative and
attractive forces [69]. In the introduction, we discussed Rydbeg atoms for quantum nonlinear
optics applications. With additional light fields, the photon-photon interactions can be tuned
to yet different regimes, such as repulsive photons [136]. Other schemes have been proposed
for realizing even higher control over the propagating polaritons [137, 138].

3.3 Collective Rydberg excitation

The interactions between Rydberg atoms discussed above allow the creation of collective ex-
citations between many emitters as discussed in chapter 2. This is possible in the far-off
resonance-regime where each atom in an atomic medium can be treated as a single two-level
system. In this regime, an atomic ensemble is subject to the collective effects discussed in
chapter 2, in particular an enhancement of coupling. Thus, a collective excitation couples
with a factor

√
N where N is the number of participating atoms compared to N independent

atoms [126, 129–131].
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Figure 3.4: Illustration of a Rydberg superatom. N constituent atoms in a small atomic
ensemble are only allowed a single shared excitation due to the Rydberg blockade with volume
rb. This allows the abstraction to the model described by equation 3.18.

In the case of excitation to a Rydberg state, the Rydberg blockade directly limits the
number of additional excitations within a given volume. To be precise, the Rydberg blockade
gives rise to an atom-atom potential. Here, the Hamiltonians discussed in chapter 2 are
extended with a potential term related to the interaction energy of a double-excitation:

1

2

N∑
j 6=k

Vjkσ
†
jσjσ

†
kσk. (3.5)

A similar interaction term also exists for ground state atoms, but here Vjk is relevant only
at distances r comparable to the ground state atom size, which is much smaller than the
interatomic distances considered here. However, for Rydberg atoms the long range atom-atom
interaction makes this term relevant for atoms within a large volume, and every atom within
in this volume can contribute to N , thus leading to N � 1.

This atom-atom potential allows to realize strong optical nonlinearities and strong cou-
plings, even to few photon fields. In particular, a well-defined atomic ensemble smaller than
the blockaded volume can host a single excitation only, while every atom in the ensemble
contributes to the coupling [57, 60, 66].

Such a system is called a Rydberg superatom [59, 61–63]. The term superatom for a
collective excitation is regularly used to describe a system of single collective excitations [139,
140], and indicates that in the limit where only a single excitation is allowed in the system,
the system can be treated by effectively describing it as a two-level system [57]. This approach
allows the treatment of such a small ensemble as a single point-like emitter without considering
propagation.

3.3.1 Rydberg superatom model

Based on the discussion in chapter 2, we model the Rydberg superatom system with a collective
ground state |G〉 and a collective bright state |W 〉 as in equation 2.21. This state is coupled
to |G〉 with a

√
N -enhanced coupling compared to the single atom case as shown in equation

2.18. As discussed in chapter 2 the system also features N − 1 other states which are not
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coupled to the light. These dark states can however couple to the bright state via exchange
of virtual photons and through dephasing mechanisms. As argued before, the coupling via
exchange of virtual photons is expected to lead into a manifold of dark states from which the
probability of return to the bright state is very low. Further, various dephasing mechanisms
wash out the effect of couplings between the superradiant state and the other states of the
system.

Consequently, we abstract the N − 1 other states to a single state |D〉. This is illustrated
in figure 3.4. This description is also discussed in other works [57, 141, 142].

With this simple two (|G〉 and |W 〉) plus one (|D〉) level model, the interaction between the
Rydberg superatom and light can now be investigated. As already discussed in the previous
chapter 2, the interaction of an electromagnetic field driving a single atom can be described
by the Hamiltonian given in figure 2.20 of the form

H = H0 + h̄
√
κ(E(0, t)σ†GW + c.c.). (3.6)

To describe the Rydberg superatom it is necessary to consider a system with three states and
replace the jump operator σ by the jump operator between the collective ground state and the
collective bright state, σGW = |G〉 〈W |. It is assumed that the superatom is located at r = 0.
The coupling strength κ is given by

κ =
g2

col

4
= g2

0

Ω2
c

∆2
N, (3.7)

where gcol is the collective coupling strength, and g0 is the coupling strength of a single atom.
The Hamiltonian H0 describes the free field,

H0 = h̄c

∫
d~k ~ka†~k

(t)a~k(t) (3.8)

where a~k is the annihilation operator of a photon in the ~kth mode. In the case of a coherent
input state the unperturbed electric field can be written by

E(~r, t) =

√
c

2π

∫ ∞
−∞

d~k ei
~k·~ra~k(t). (3.9)

From this Hamiltonian the full system behavior can be described given the superatom state
by integrating over the free field. Here, the field at a given position and time is described by
the given input field and the atomic state.

To see how the interaction with the superatom modifies the electric field we consider the
time-evolution of the field operators under eq. 3.6.

∂ta~k(t) = − i
h̄

[H, a~k] = −ic~ka~k(t)− i
√
κcσGW (t), (3.10)

which follows from the commutation relation [a~k, a
†
~k
] = 1. The field-operators and the atomic

operators commute as usual.
If the system state is known at some time t0 = 0, the field at some later time t is given by

E(~r, t) =
1

2π

∫ ∞
−∞

d~k e−ic
~kt+i~k·~ra~k(0)

− i
√
κ

∫ t

0
dt′
∫ ∞
−∞

d~k e−ic
~k(t−t′)+i~k·~rσGW (t′) (3.11)
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Here the first term describes the incoming field, which is not changed by the superatom,
and the second term describes the superatom-introduced field changes. The first term can be
replaced by a non-interacting field term Ē(t). In the case of a coherent field the field amplitude
is α(t) = 〈Ē〉.

The inner integral of the latter term becomes a delta function, and with the outer integral
a Heaviside step function, such that the field is completely determined by Ē in space up to
the position of the superatom at r = 0. Eventually, the field becomes

E(~r, t) = Ē(t)− i
√
κ

2
σGW (t). (3.12)

Here it has been assumed that the superatom is a point-like object. It then follows that the
expectation value of the field is

〈E(~r, t)〉 = α(t)− i
√
κ

2
〈σGW (t)〉 . (3.13)

In the experiments discussed in the following sections, the outgoing intensity will be measured.
The outgoing intensity is given by

〈E†(~r, t)E(~r, t)〉 = |α(t)|2−i
√
κ

2
〈σ†GW (t)σGW (t)〉

− i
√
κ

2
(α∗(t) 〈σGW (t)〉+ c.c.) . (3.14)

From these equations we can predict the outgoing intensity profile when the atomic state is
known, as well as the intensity correlation functions. In section 3.5, we show how the superatom
affects the second and third order intensity correlation function g(2)(t1, t2) and g(3)(t1, t2).

In the above we considered how the field changes depending on the superatom dynamics
measured by σGW . The actual time evolution of the superatom must be known to find the
actual values of equation 3.14. This is deduced by considering the time evolution of an arbitrary
operator working only on the atomic subsystem [94],

∂tA(t) = − i
h̄

[H,A(t)]

= −i
√
κ
(
Ē∗(t)[A(t), σGW ] + Ē(t)[A(t), σ†GW ]

)
− κ

2

(
[A(t), σ†GW ]σGW (t) + [A(t), σGW ]σ†GW

)
. (3.15)

The time-evolution of A can be split in a coherent and an incoherent part. The first term de-
scribes the coherent evolution. Considering the definition of Ē(t) this term is readily rewritten
to an effective Hamiltonian describing only the superatom state

HEff = h̄
√
κ(α∗(t)σGW + α(t)σ†GW ). (3.16)

The second part of equation 3.15 is a dissipative term. Its exact form is found by tracing over
the field-part such that only the atomic system is left [57]. This dissipative term accounts for
spontaneous decay of the superatom due to the field coupling.

The final master equation for the superatom state becomes

∂tρ = − i

h̄
[HEff , ρ] ρ+ κD[σGW ]ρ. (3.17)
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Figure 3.5: Populations calculated for κ = 0.5 µs−1 and input field with photon rate Rin =
1 µs−1 for different values of γD and Γ. The top row shows population in the bright state only,
while the bottom row shows dark state population and total Rydberg population. a) shows
the population in |W 〉 calculated for the pure Hamiltonian compared to the full dynamics
described by equation 3.17. b) shows the population in |W 〉 for different values of γD. c)
shows the total Rydberg population and the population in |D〉 for the same values of γD.
Solid lines are the total Rydberg population, dotted lines are the population in |D〉. d) shows
what happens if Γ = 0.11 µs−1 = 0.2 κ is introduced.

This equation highlights both how the coupling to the light with strength κ may drive coherent
dynamics and also how it causes decoherence through spontaneous emission.

The master equation holds in free space, and it also holds in a waveguide, though the
incoherent coupling strength depends on the type of waveguide as discussed in chapter 2. The
master equation does not apply to a cavity system, however. Due to the recycling of photons in
a cavity system, the incoherent loss rate and the coherent coupling strength are independent.

The above master equation does not take the dark state into account. For a full description
we also need to consider that |W 〉 couples to |D〉 with some dephasing rate γD and that the
individual single atoms can decay with the Raman decay rate Γ of equation 3.3. In order to
establish a master equation that takes the dark state into account, we simply include these
other incoherent processes by adding them by hand. The full master equation is

∂tρ = − i

h̄
[H0, ρ] ρ+ (κ+ Γ)D[σGW ]ρ+ γDD[σDW ]ρ+ ΓD[σGD]ρ. (3.18)

This master equation can be solved numerically, yielding the dynamics of the superatom.
The solution of equation 3.18 shows how the collectively excited state behaves under different
conditions such as with different driving fields and different parameter-ranges.
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The time evolution of the Rydberg superatom described by equation 3.18 can be described
with three parameters: κ, Γ, and γD. Additionally, the initial state, and the driving field
must be known. Some predictions based on the model given by the master equation 3.18 are
illustrated in figure 3.5. The figure presents the probability of finding the system in the state
in |W 〉, |D〉, and in any of the two, for different parameter sets.

Figure 3.5 a) first illustrates the point stressed about equation 3.17: Coupling to the light
field does not only lead to coherent interaction, but also to decoherence. This is evident when
comparing the Rydberg population calculated with the Hamiltonian alone to the Rydberg
population calculated with the master equation of 3.17.

Figure 3.5 b) and c) show the idealized case of no Raman decay, while figure 3.5 d) shows
the dynamics as the Raman decay is introduced. Here it is clear that for γD � κ the total
Rydberg population is almost identical to the population in |D〉. The population does not
go to unity, rather, it saturates slowly at some value < 1. This is a clear indication of the
effective adiabatic elimination of |W 〉: The probability of even reaching this state from which
the population can be transferred to |D〉 falls off due to the strong decay channel.

The model given in equation 3.6 is not limited to making predictions; it can also be used
to fit experimental results. This will be discussed in the following chapters [57, 143].

3.4 Experimental realization of Rydberg superatoms

In the previous section we saw how the Rydberg blockade allows the creation of Rydberg
superatoms which couple strongly to a driving field. In this and the following sections we
consider how the Rydberg superatoms are realized experimentally.

The experiments discussed in this thesis are all performed with a thermal cloud of ultracold
Rb87 atoms. The atoms are cooled in optical dipole traps that define the geometry of the
atomic cloud. We eventually use two different kinds of dipole traps: An elongated ellipsoid
trap, and multiple small traps, called dimple traps. These smaller dimple traps are used to
prepare the Rydberg superatoms.

Our normal experimental procedure starts by first cooling and trapping 87Rb atoms from a
background gas in a magneto-optical trap (MOT). The atoms are transferred into one or more
optical dipole traps, where they are cooled to < 10 µK. The behavior of the ultracold atoms in
these traps are characterized by means of absorption imaging, single photon detection, and ion
detection. With single photon detection we measure the transmission of a few-photon probe
beam through the ultracold atoms. The transmission can be controlled by a strong control
field coupling the atoms to Rydberg states. We can ionize any Rydberg atoms in the samples
and use ion detection of the produced Rydberg ions to measure the Rydberg population.

In the following sections, we describe the general experimental setup used in the scope of
this thesis for cooling and trapping 87Rb. Detailed discussion of this setup is found in previous
works from this group [120, 144, 145], and this section mainly serves as an overview of the
most important features of our system.

The experiments are carried out in a vacuum system with a glass cell providing sufficient
optical access for the experiments. Inside the glass cell a vacuum-compatible field-control
system, discussed in [146], and a multi-channel plate3 (MCP) for ion detection are mounted.
The vacuum system also contains the atom source in the form of rubidium dispensers4.

3Hamamatsu F4655-13 MCP
4From SAES Getters, RB/NF/4.8/17 FT 10+10
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Four sets of magnetic coils are arranged around the glass cell. One set is in anti-Helmholtz-
configuration and is used to provide the magnetic fields for magneto-optical trapping of the
atoms. The remaining three sets are in Helmholtz-configuration and are used for compensation
of stray fields and definition of a quantization axis.

Several different laser beams are used for the cooling and trapping of the atoms. The optics
around the vacuum chamber and the beams can coarsely be divided in two groups: Those
used for preparation, that is cooling and trapping, and state-preparation of 87Rb, and those
used for measurements and system characterization, which comprising absorption imaging and
few photon probing. All beams are fiber-coupled at least once before the experiment and a
majority of the lasers are locked directly or indirectly to an ultra-stable reference cavity with
the exception of the lasers used for Raman sideband cooling and the trapping lasers at 805 nm
and 1064 nm which are not frequency stabilized.

3.4.1 Cooling and trapping of rubidium

The first step in our experimental procedure is the trapping of rubidium in a magneto-optical
trap (MOT). The MOT is a three-dimensional configuration of beams overlapped at the center
of a quadruplole magnetic field [2]. This stage of cooling is necessary because dipole traps are
not strong enough to capture atoms directly from the background vapor.

We load the MOT for approximately one second, before the atoms are transferred into a
crossed optical dipole trap [147]. The optical dipole trap is kept on while the MOT is loading,
already capturing some atoms, but the main transfer happens during compression of the MOT.
This compression has three components: Increasing the MOT quadrupole field, decreasing the
intensity of the MOT and repumper light, and increasing the red-detuning of the MOT light.

The crossed optical dipole trap is shown in figure 3.6. It has a wavelength of 1064 nm, and
the two beams of the cross intersect at an angle of 30◦ and are focused with 1/e2-waist radius
of 55 µm.

This crossed dipole trap can be superimposed with additional trapping beams at 805 nm
focused onto the crossed trap with waists of 10 µm along the system y-axis direction and 21 µm
along the system z-direction in order to form so-called dimple traps. These dimple traps are
also shown in figure 3.6 and will be discussed in more detail in section 3.5.

Once the atoms are loaded into the optical traps, multiple steps for cooling and preparation
follows before the actual probing of the superatoms takes place. The optically trapped atoms
are cooled with steps of combined evaporative cooling and Raman sideband cooling. The
Raman sideband cooling is realized by overlapping the optical dipole trap with three Raman
beams. One of the beams is retroreflected, and the resulting four beams create a three-
dimensional lattice potential and provide Raman coupling. This lattice is only used for the
cooling-steps and will not be further considered. The details are discussed in [120, 141]. After
the cooling steps we introduce a hold-time in the dipole trap, and optically pump the atoms
to the desired state, in this case the |g〉 = |5S1/2, F = 2,mF = 2〉 state.

With these steps we have now prepared an atomic sample in an optical dipole trap. The
exact characteristics of this sample are determined through absorption imaging, single photon
probing and Rydberg ion measurements: After the optical pumping, the atomic ensemble is
briefly released from the dipole trap and is either imaged or probed with a few-photon probe
pulse.

After any measurements the atoms are released, and reference measurements without atoms
are performed before the MOT phase lasers are turned back on and the cycle starts over. The
experiment normally runs with a repetition rate of 0.5 Hz.
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Figure 3.6: Sketch of the trap geometry in the glass cell of the vacuum chamber as seen from
the top. The atoms are loaded from a MOT (not shown) into a crossed optical dipole trap
forming an ellipsoid trap along the setup y-axis. The crossed dipole trap can be superimposed
with the dimple traps along the x-direction. The atoms in the optical dipole traps can be
addressed with a probe field. After passing through the atoms, the probe light is fiber-coupled
with an optical single mode fiber. It is split onto four SPCM’s in a Hanbury Brown and Twiss
setup. The probe field is overlapped with a control field, which is used to address transitions
to Rydberg states. The setup is implemented with two directions of probe beam such that
the atoms can be probed with probe and control beams in either a co- or counterpropagating
configuration.

3.4.2 Probing and detection

With the atoms prepared in the optical dipole trap we can start collecting data for charac-
terization and measurements on the system. In particular, we use imaging, single photon
detection, and ion detection.

The setup has cameras for absorption imaging installed along two axes, such that the atoms
can be imaged in both the y, z- and the x, y-planes. The imaging setups are used regularly, both
for alignment purposes, and for characterization of the experiment performance. In particular,
we use absorption imaging to determine the number of trapped atoms, the trapping frequencies,
and the atom temperature from time of flight measurements. The imaging is done on the
|5S1/2, F = 2,mF = 2〉 → |5P3/2, F = 3,mF = 3〉 transition. Under normal circumstances, we
trap on the order of 6× 104 atoms in the dipole trap, and our cooling scheme cools the atoms
to ∼ 3 µK, which we measure through absorption imaging.

Eventually, the imaging is a characterization tool, and our real experimental data consists
of single photon traces from probing of the ultracold atoms. The atom ensembles are probed
along the long axis of the optical dipole trap as shown in figure 3.6. The probe field is focused
to a 1/e2-waist of ∼ 6.5 µm and the focus is overlapped with the dipole trap. The few photon
probing happens on the |5S1/2, F = 2,mF = 2〉 → |5P3/2, F = 3,mF = 3〉-transition. We label
these states the ground state |g〉 = |5S1/2, F = 2,mF = 2〉 and |e〉 = |5P3/2, F = 3,mF = 3〉.
By measuring the transmission across the resonance of the |g〉 → |e〉-transition we obtain the
optical depth (OD) of the atomic ensemble. This is shown in figure 3.7. For the experiments
presented in the following sections we load dipole traps with OD on the order of 40-60 as a
starting point for measurements on Rydberg superatoms.

To create Rydberg excitations, we couple the atoms to the Rydberg states with a strong
control field of wavelength ∼ 480 nm. The control laser field is overlapped with the probe
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Figure 3.7: Transmission of probe beam through atoms in the crossed optical dipole trap. The
points show measured values, error bars are standard error of mean. The dotted line shows
the result of fitting an absorption curve to the measured transmission. The fit results yield
the optical depth 55.

beam and focused to ≈ 14 µm onto the dipole trap. The larger waist ensures that the spatial
variation of the control field is comparatively small over the probe beam focus where excitations
can take place. The probe and control fields are overlapped with dichroic mirrors and can be
set up in either a co- or a counterpropagating configuration depending on the application of
interest as illustrated in figure 3.6.

With the probe and the control fields we can drive transitions on and detuned from reso-
nance as shown in figure 3.1 and couple via |e〉 to a Rydberg state |r〉 = |nS1/2, J = 1/2,mj =
1/2〉. In chapter 4 we use n = 111, and in chapter 5 we use n = 121.

We turn off the dipole trap for probing, and keep it off for 14 µs. As the dipole trap turns
off, we turn on the control field. The atoms are allowed 2 µs before we define the detection
window as started. In this time-window of 12 µs the probing and detection of single photons
take place.

The few-photon probe pulses are coupled back into a single mode fiber and split onto four
separate single photon counter modules (SPCM’s)5 in a ’double’ Hanbury Brown and Twiss
(HBT) setup as illustrated on figure 3.6 [148]. The HBT setup is discussed in [144], and
allows detection of photon-photon correlations, for instance stemming from Rydberg atoms
[67]. The separation onto four separate counters allow for measurements of higher order photon
correlations [149].

Photon- and ion detection events are both counted with a time tagger6. After this exper-
iment time-window, the optical dipole trap is turned back on and kept on for 100 µs, before
the probing sequence is repeated. In this 100 µs-window remaining Rydberg atoms are ionized
with a strong electric field pulse. The ions are steered to and detected on a MCP [150]. The
exact setup of the electric field control and the ion steering is discussed in [146]. The position
of the ions in the atomic sample causes a temporal spread in ion detection time. This in effect
comprises a crude form of one-dimensional ion microscopy which yields an estimate for the
Rydberg population.

Since we probe with few photon pulses, and only excite single or a few Rydberg atoms
in each experiment, the loss of atoms during the probing is very limited. This allows us to

5Excilitas SPCM-AQRH-23 FC
6Swabian Instruments Time Tagger 20
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recapture the atoms in the dipole trap after one probing event, and thus we recycle the same
atomic medium many times before reloading the dipole trap.

Normally, an experiment cycle consists of 1000 probing sequences. After the probings the
atoms are released by turning off the dipole trap for 10 ms. Then the trap is turned back
on and kept on emptily, and 1000 reference measurements without atoms in the system are
performed.

3.5 Dimple traps for Rydberg superatoms

In the previous section we discussed cooling and trapping of 87Rb in a crossed optical dipole
trap. In this section we show how overlapping the crossed dipole trap with smaller optical
dipole traps, the dimple traps, which allow us to create Rydberg superatoms. The geometry of
this trapping setup is illustrated in figure 3.6. They are realized along the experimental x-axis
and are created from beams with wavelength of 805 nm. We use 805 nm which is relatively
close to the 780 nm imaging light. This allows us to image through the same optics as we use
for the dimple trapping as discussed in ref. [142]. Further, being closer to resonance than
1064 nm allows us to use relatively low power for this trapping.

The separate dimple trapping beams are created from a single beam which is split with an
acusto-optical deflector7 (AOD) [28, 29, 151]. The exact setup is discussed in my master thesis
[142]. By applying mixed RF frequencies to the AOD multiple different diffraction orders can
be created. The diffraction orders are straightened relative to each other and size-adjusted
with a cylindrical telescope. They are focused onto the dipole trap with an objective of effective
focal length of f = 79.5 mm. We apply RF-frequencies in the range 84 − 120 MHz generated
by an Arduino-controlled direct-digital synthesizer board8 (DDS). The signals are mixed with
each other and amplified before the combined signal is applied to the AOD.

Using a DDS allows us to control both the frequency and the amplitude of the mixed signals
individually. Hence, we can control the intensity and the position along the experimental y-
axis in the individual diffraction order, and thus the position and depth of the individual traps.
The changes can be implemented both between and during the experimental sequence, thus
the individual traps can be deepened and moved independently during the experimental cycle.
The setup used during the scope of this thesis allows loading of up to three dimple traps with
up to on the order of 1× 104 atoms.

We use this tunability for fine-tuning of the superatom positions and Rydberg resonance as
we will see in the following sections. Such a fine-tuning becomes particularly important when
multiple superatoms are considered. Thus, we employ tailored loading schemes for one, two or
three superatoms. Generally, we are interested in creating as identical superatoms as possible,
both in terms of atom-numbers, and thus coupling strength, and resonance frequency, which is
determined by the differential light shift from the dimple traps. The optimal AOD parameters
for dipole trap overlap, loading procedure, and final dimple intensity are determined through
an a combination of imaging, probing, and ion measurements.

3.5.1 Number-specific loading schemes

In order to realize several Rydberg superatoms, we tailor the loading procedure in order to
make the superatoms as identical as possible. Realizing a single atomic ensemble in a dimple

7AA Opto-Electronics model DTSX-400-800
8AD9959 DDS Evaluation board from Analog Device
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Figure 3.8: Procedure for characterizing a single dimple trap when multiple dimple traps are
created. The crossed optical dipole trap is shown in purple, and the dimple traps are shown in
red. The atoms are shown with black. a) The loading procedure is finished, and two dimple
traps have been loaded with atoms. The crossed dipole trap provides confinement along the x-
axis. b) The crossed dipole trap is turned off, and the atoms are only held in the dimple traps.
c) One dimple trap is moved away from the area of the crossed dipole trap. The ramp-away is
done by changing one of the frequency components applied to the AOD. d) The moved dimple
trapping beam intensity is turned down, releasing the atoms outside of the trapping region
of the crossed dipole trap. The crossed dipole trap is turned back on to provide confinement
along the x-direction for the atoms remaining dimple trap.

trap dimple and thus a single superatom is relatively straightforward: Superimposing a single
dimple trapping beam with the dipole trap. Realizing more than a single atomic ensemble,
however, is limited by the overlap with the dipole trap. For two ensembles, we apply the same
procedure as for a single ensemble. We adjust the position of the two beams relative to the
crossed optical dipole trap to get roughly the same number of atoms in the two ensembles.

Three ensembles pose another challenge, since one dimple trap has to be positioned in the
center of the optical dipole trap where the atomic density is highest, while two other dimples
will be loaded from a region with a lower density. Therefore, we employ a scheme of first
ramping on the two dimple traps on the sides of the optical dipole trap, and then we we ramp
up the intensity in the central dimple beam in a subsequent step. This way we can ensure that
the number of atoms loaded into this trap is not much greater than the number of atoms in the
two other traps. We adjust the steepness of the different ramps, and the relative time-onset
of the ramps to realize similar atom numbers.

We use the option to change the distance between the dimple traps to characterize indi-
vidual superatoms and to balance the atom numbers between the ensembles. By moving one
or more dimple trapping beams away from the cross of the dipole trap and then releasing
them, we are able to probe the remaining atoms and thereby any remaining superatoms. The
procedure is sketched in figure 3.8.
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Figure 3.9: Absorption imaging of atoms in dimple traps for different time of flights. a), b),
c) are for time of flight 0.12 ms, d), e), f) for 0.32 ms, and g), h), i) are for 0.52 ms.

In practice, the AOD is not perfectly linear in response to intensity, and we expect that the
same is true for the mixer. As a consequence, the behavior of a superatom whose ’neighbor’
has been released may not exactly reflect the true parameters of this superatom when it is
probed with a neighbor. Yet, this ramp-away method is an important tool to verify that the
atoms are evenly distributed between the atomic ensembles so we get comparative parameters
for coupling to the probe light. Again, this will be discussed in more detail in the following
chapters, in particular in chapter 5, where we will see that OD in three ensemble does not
equal the sum of the three individual ensembles.

Figure 3.9 shows absorption imaging of one, two, and three atomic ensembles in the dimple
traps. The absorption imaging is primarily used to provide a qualitative estimate of whether
the dimple trapping beams are well overlapped with the dipole trap and the probe beam. We
use the imaging to estimate the temperature through time-of-flight measurements as shown
in figure 3.9. Normally, we operate the with atoms at ≈ 10 µK In the images on figure 3.9,
the relative distance between the dimples is on the order of 80 µm for two dimples and on the
order of 60 µm between three dimples measured from dimple center to dimple center.

3.5.2 Differential AC Stark shift

In the above section we discussed how we use the dimple trapping beam positions to control the
atom number in the separate ensembles. We keep the dimple traps turned on during probing,
and this gives rise to a differential light shift which may be different for each atomic ensemble.
Therefore, we adjust the intensity in the individual trapping beam to give the same light shift
in all ensembles. When preparing Rydberg superatoms we ramp the dipole trap off and back
on before the optical pumping in order to release atoms trapped outside of the dimple traps.
However, by keeping the dimple traps on during probing, the differential light shift experienced
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Figure 3.10: Rydberg spectroscopy on atoms in two dimple traps with unbalanced beam
intensities. a) shows the number of ions detected during the ion detection window for different
detunings. b) shows the sum over ions for all detunings in each ion detection window time-bin
of 3.0 ns. c) shows the sum of ions over the full detection window as a function of detuning.

by the atoms in the dimple traps further allows us to distinguish atoms trapped in the dimple
traps from untrapped atoms between the dimples.

Figure 3.11: Rydberg spectroscopy for balancing the differential AC Stark shift experienced
in two different dimple traps. The data has been separated by detection time. Points show
measured ions, dotted lines show Lorentzian fits to the ion profiles. a) shows the unbalanced
case of figure 3.10. b) shows the case where the intensities in the two beams have been adjusted
accordingly. The error bars are standard error of mean.

When we are interested in identical atomic ensembles it is important that all ensembles are
subject to the same differential light shift. In order to get the balance between the different
trap intensities exactly correct we excite the ensembles via a two-photon process to |r〉. We
then apply a strong electric field to ionize the Rydberg atoms. We detect the ions and use the
ion signal to determine the two photon resonance.
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Figure 3.12: Comparison between measured transmission through a single Rydberg superatom
for different photon rates. faint data points show the input field measured without atoms in
the system, and darker data points show the transmission through the Rydberg superatom.
The solid, black lines show the model of equation 3.18 fitted to the experimental data.

Due to the spatial dependency of the ion arrival time it is possible to determine in which
atomic ensemble an ion is created. This is illustrated for two dimple traps in figure 3.10. This
figure shows the number of detected ions in the detection time-window as a function of probe
detuning. Figure 3.10 b) shows the sum of ions for all detunings as a function of time in the
detection window. Figure 3.10 c) shows the number of detected ions as a function of detuning
with a significant shift between the two photon resonance frequencies of the two ensembles.
Figure 3.10 shows a case where the two dimple traps are imbalanced. Based on the measured
ion-signals, we adjust the trapping intensities. This is shown in figure 3.11. Figure 3.11 a)
shows the detected ions in the two time-windows which can be identified in figure 3.10 b).
This is the same signal as is shown in figure 3.10 c). Figure 3.11 b) shows the detected ions
after adjustment of the intensity in the two dimples.

It is important to notice that even though the superatoms are created with the same
intensity in the dimple trapping beams, they are not necessarily identical in atom number or
coupling strength. As discussed in section 3.3 we expect each ensemble to host only a single
excitation, independent of the coupling parameters.

Hence, both probing and ion detection are crucial to characterize and adjust the superatom
system: Probing gives us information of atom numbers, and the system parameters, and ion
detection gives us information about the resonance frequency. Figure 3.12 shows fits of the
parameters discussed in section 3.3 for different input photon rates.

3.6 Single Rydberg superatom

As discussed in section 3.3, an ensemble of atoms which can be collectively excited to a Rydberg
state via a two-photon process is expected to be coupled to the driving field with a strongly
enhanced coupling strength, which allows even reaching of single photon regime.

Thus, when driving a single superatom, w observes single photon Rabi oscillations - im-
printed in the light detected on the single photon counter modules. Such a few-photon Rabi
oscillation is shown in figure 3.12, which shows the transmitted light through a Rydberg super-
atom. The input pulse is Tukey-shaped as a compromise between a flat-topped pulse, which
gives constant Rabi frequency during the pulse, and a Gaussian shape pulse which is narrow
in frequency.
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Figure 3.13: Second order intensity correlation function for three different photon rates. The
correlation functions show clear stripes of photon bunching and photon anti-bunching. a) is
for photon rate Rin = 3.4 µs−1, b) is for Rin = 6.7 µs−1, and c) is Rin = 15.2 µs−1.
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where trise is the rise time, defining the duration of the cosine-shaped rise and fall of the pulse,
and tup is the up-time giving the duration of the flat top of the pulse.

In figure 3.12 the measured transmission is shown together with model predictions from
the superatom model presented in section 3.3. In addition to the intensity modulations we
can look for correlations between photons in the outgoing light. This is possible with the
HBT-setup shown in figure 3.6. We consider the second order correlation function g(2)(t1, t2)
which is defined as

g(2)(t1, t2) =
〈n1(t1)n2(t2)〉
〈n1(t1)〉 〈n2(t2)〉

. (3.20)

Note that we consider here the two-time correlation function, instead of the common g(2)(t2−
t1), which is only applicable in a time-invariant situation. Here, instead, we are observing the
transient dynamics of the superatom during a short (compared to the time to reach steady
state) driving pulse. A comparison between the theoretically predicted correlation function
and the correlation function extracted from measurements is shown in figure 3.13. This figure
shows two-photon bunching along the t1 = t2-diagonal, and then lines of antibunching off the
diagonal. This shows how the coherent dynamics reorder the photons within the few-photon
pulse.

While figure 3.13 shows correlations between two-photon detection events it is also pos-
sible to study higher-order correlations, as demonstrated in [143] where we measured third
order correlations between photons were measured. Three-photon correlations have also been
observed in cavity systems and other Rydberg systems [149, 152]. Here we briefly revisit the
results of ref [143] for completeness. A lengthier discussion is presented in ref. [142].
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In this case the third-order correlation function of the intensity at three different times, t1,
t2, and t3, was measured. The third order correlation is given by

g(3)(t1, t2, t3) =
〈E†(t1)E†(t2)E†(t3)E(t3)E(t2)E(t1)〉
〈E†(t1)E(t1)〉 〈E†(t2)E(t2)〉 〈E†(t3)E(t3)〉

. (3.21)

which is readily available from the experiment where the few-photon pulses are split onto four
different detectors in the HBT setup.

While g(3)(t1, t2, t3) contains information about the correlations between three detectors
for time t1, t2, and t3, it is important to note that this also counts two correlated photons
and a third ’spectator’ photon. Therefore, it is meaningful to introduce the connected third

order correlation function, g
(3)
conn(t1, t2, t3), where contributions from g(2)(t1, t2), g(2)(t2, t3), and

g(2)(t1, t3) are subtracted,

g(3)
conn(t1, t2, t3) = g(3)(t1, t2, t3)−

∑
i<j

g(2)(ti, tj) + 2. (3.22)

g
(3)
conn(t1, t2, t3) = 0 in the case of no three-photon correlations. Values above 0 indicates three

photon bunching, while values below 0 indicates antibunching.

Since g
(3)
conn(t1, t2, t3) depends on three time-coordinates, and thus is a three-dimensional

data-structure, it is instructive to do a coordinate transformation into two-dimensional co-
ordinates. Sometimes τ , which is a time-difference coordinate is used together with one
time-coordinate [152]. Alternatively, one can use Jacobi coordinates, R, η, and ζ, which
describe different planes in the three-dimensional space by the three time-coordinates: R =
(t1 + t2 + t3)/

√
(3), η = (t1 − t2)/

√
2, and ζ = (t1 + t2)/

√
6−
√

2 t3/
√

3.
The experiment discussed in [143] and [142] were done with a single Rydberg superatom of

OD approximately 9, and temperature ∼ 9 µK, and fit-parameters deduced from single photon
Rabi oscillations as shown in figure 3.12 κ = 0.55 µs−1, Γ = 0.14 µs−1, γdD = 1.49 µs−1.

The measurements were done for three different photon rates, namely Rin = 3.4 µs−1,
Rin = 6.7 µs−1, and Rin = 15.2 µs−1. The resulting photon traces were used to calculate the
correlation function which was investigated for different values of the Jacobi coordinate R.

Figure 3.14 shows g
(3)
conn(t1, t2, t3) from the experimental data and from the theory. The data

have been averaged over a window of R in order to reduce noise and is plotted from the middle
of the pulse.

The signal from pure third-order correlations is small compared to that from two-photon
correlations, and the experimentally measured correlation function is small relative to the
theoretically predicted correlation function from the model. However, the main features of
oscillating three photon bunching and anti-bunching are clearly seen in particular for high
photon rates.

It is instructive to compare the performance of the superatom to that of a perfect two-
level system. In particular it is possible to consider the interactions with different photon-
number-state components of the driving field as discussed in [153]. The analytically calculated

g(3)(t1, t2, t3) and g
(3)
conn(t1, t2, t3) of such a perfect two-level system are shown in figure 3.15.

g
(3)
conn(t1, t2, t3) shows the nontrivial contributions from three-photon correlations. The central

bunching feature is of particular interest since this is also observed for the superatom, and in
the idealized system this stems from a three photon bound state.

These previous results highlight that Rydberg superatoms have the capacity of manipula-
tion and creation of nonclassical photonic states.
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Figure 3.14: Third order connected correlation function measured in a single superatom and
compared with model calculations. a), b), and c) show experimental data. d), e), and f)
show model predictions. a) and d) shows correlations for Rin = 3.4 µs−1, b) and e) are for
Rin = 6.7 µs−1, and c) and f) are for Rin = 15.2 µs−1.

3.6.1 Rydberg superatoms as waveguide QED system

In the previous section we have seen that due to the collective nature of the Rydberg excitation,
the superatom couples strongly to a single driving mode, and emits back into this mode
with a strong directionality. The strong coupling has allowed observations of absorption and
reemission of single photons from back into the driving pulse as shown in figure 3.12, and
allowed measurement of second and third order single photon correlation functions.

Hence, a Rydberg superatom strongly resembles an emitter coupled to a chiral waveguide.
To put it differently, the superatoms are effectively creating a waveguide due to the collec-
tive nature of the Rydberg excitation. A superatom itself couples strongly to ’its’ waveguide,
whereas the individual constituent atoms are not coupled to this system mode. More compli-
cated dynamics can be imagined if both the superatoms and the constituent atoms are coupled
to an actual waveguide [105].

Staying in the picture of the single waveguide prepared by the superatom, the superatom
can be characterized by the same set of parameters as any ordinary waveguide. The relative
coupling strength was given in equation 2.29:

β =
κ

κ+ Γ
. (3.23)

Unlike the situation for atoms in free space, where the maximum coupling to a single mode
equals the linewidth Γ0 in case of perfect mode matching [154], the coupling of a superatom
can be scaled by changing the number of contributing atoms N . With the definition of κ and
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Figure 3.15: Third order connected correlation function calculated for a perfect two-level
system.

Γ,

κ = g2
0

Ω2
c

∆2
N Γ =

Ω2
c

4∆2
Γ0, (3.24)

it follows that

β ∝ N

N + Γ0

4g2
0

. (3.25)

As N increases, the relative coupling is in principle expected to get increasingly stronger,
leading to the limit of β → 1. However, β considers only the rate of forward emission relative
to the total emission rate, but does not take decoherence into account. Another coupling
parameter can be defined as

βcoherent =
κ

κ+ Γ + γD
, (3.26)

where βcoherent describes the coherent emission relative to total emission and loss of coherence.
At first glance it would appear that increasing N could also improve βcoherent. However,
indefinite increase of N is not an option for the Rydberg system. The N constituent atoms
have to be within the blockade volume in order to share the single excitation. As already
mentioned higher density also increases the probability of the Rydberg blockade failing and the
creation of Rydberg molecules [134]. The Rydberg state can also not be increased indefinitely
in order to increase the blockade volume, because it becomes more fragile and susceptible to
dephasing due to external fields.

Independently of selection of β or βcoherent the strength of an N emitter-system sharing a
single, coherent excitation is apparent. The collective nature of such an excitation allows for
strong and directional coupling, reaching even single photon level. In the following sections,
we will discuss how such a system is realized experimentally.

In the previous section we found parameters for a superatom in free space emitting into a
single probe mode on the order of κ = 0.5 µs−1, Γ = 0.15 µs−1, and γD = 1.4 µs−1, yielding β '
0.75, and βcoherent ' 0.25. In [57], the found parameters were κ = 0.428 µs−1, Γ = 0.069 µs−1,
and γD = 1.397 µs−1. With these parameters, one finds β = 0.86 and βcoherent ∼ 0.23. Despite
the lack of an actual waveguide, these parameters are competetive or even exceeding many
other systems. For a recent review of other waveguide-coupled systems, we refer to ref. [112].
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3.7 Cascaded Rydberg superatoms

We have shown that a single Rydberg superatom is a model system for manipulating light on
single photon level, and we have discussed how the single superatom resembles a waveguide-
coupled emitter. The next step to consider is a cascaded system of Rydberg superatoms.
This is possible to realize with the dimple trapping geometry shown in figure 3.6, and three
superatoms in a chain as shown in figure 3.9. In this section we consider how such a coupling
would manifest itself, and consider the relevant parameters for such measurements.

To model the cascaded system of superatoms, we use the same modelling as discussed
in section 3.3, but we extend this model to take the interaction between the superatoms
into account. This interaction is expected to be mediated by the unidirectional superatom
emission as discussed in section 2.3.1. To take the inter-super-atomic interactions into account
we describe the full system as a nm × nm density matrix, where n is the number of levels
considered in each superatom, and m is the number of superatoms.

The calculations in this section are done with the QuTiP library for Python [155].

3.7.1 Two two-level atoms with decay out of a waveguide

The simplest case, two two-level atoms, is discussed in figure 2.3.1, and leads to a 4×4 density
matrix described by the optical Bloch equations of eq. 2.12 to 2.15, and including the coherent
coupling of equation 2.31.

In this section we consider two two-level atoms coupled to a chiral waveguide. The emission
from two atoms coupled to a chiral waveguide starting in the fully inverted system was already
shown in figure 2.6. In this figure we assumed perfect two-level atoms. As discussed in
section 3.3 the interaction between a two level atom and a light-field necessarily causes some
decoherence with rate κ. In the case of the Rydberg superatom, κ describes the superatom
coupling, but the individual atoms also have a finite probability of decaying with rate Γ into
4π. For two-level atoms coupled to a waveguide, this would correspond to decay without
emission into the waveguide mode. In order to include Γ, we use the master equation for the
Rydberg superatom, equation 3.18 with γD = 0.

Figure 3.16 shows the cost of including decay out of the waveguide. Panels a) and b)
show the evolution of a system starting in the fully inverted system |ee〉. The inclusion of
single atom-decay Γ does not alter the dynamics significantly for low values of Γ as in the
experiments, but for higher values of Γ the dip caused by the directional coupling washes out.
The washing out is caused by the bright state decaying to the ground state before population
is transferred to the dark state. The collective dark state is also decaying with rate Γ rather
than coupling coherently back into the bright forward state. Therefore, the addition of decay
out of the waveguide speeds up the observed emission rate, and leads to a steeper emission
slope, corresponding to a smaller fraction of the excitation being emitted into the waveguide
system. Panels c) and d) show a system prepared in the waveguide bright state. Here we
also see the speed-up of decay as in panels a) and b), yet the emission from the bright state
maintains the full drop to zero at t = 2κ.

So far, we have shown the ideal situation of the two-atom system prepared in a well-known
excited state. An experimentally more relevant situation is the system starting in the ground
state and being driven to some excited state with a field pulse. This situation is shown in
figure 3.17, where we have set κ = 0.5 µs−1, and Γ = 0. We vary the length of the pulse to
demonstrate how the two waveguide-coupled atoms are prepared in different collective states
depending on the driving. We will return to this point in chapter 4. The increase in emission
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Figure 3.16: Decay of two two-level atoms coupled to a chiral waveguide with coupling strength
κ for different value of the decay Γ out of the waveguide and for different initial states. a) and
b) show the system starting in the fully inverted state, |ee〉. a) shows the emission on a linear
scale, b) shows a semi-logarithmic scale. c) and d) are calculated for the two two-level atoms
starting in the collective bright state |W 〉. c) is plotted with a linear scale, and d) is plotted
with a semi-logarithmic scale.

after the end of the pulse is caused by extinguishing the probe field faster than the lifetime of
the excited state [95, 96].

The transmission of a probe pulse shown in panels a) and c) does not differ significantly for
sets of two atoms coupled and not coupled to a chiral waveguide. However, the emission after
the end of the pulse shows different behavior for the two cases. The difference is in particular
notable when the emission is shown in a logarithmic scale as on panels b) and d). The emission
after the end of the pulse features a dip in emission, similar to what was seen in figure 3.16.
As discussed already in section 2.3.1, a system of two atoms coupled to a chiral waveguide
is expected to feature a shelving of excited population into the dark state. Panels b) and c)
shows how the depth and steepness of the dip depend on the driving pulse. This is caused by
loss of coherence between the bright state and the dark state due to stimulated emission with
rate κ.

3.7.2 Two-plus-one level superatom

In the previous section we considered what happens when two perfect two-level atoms are
coupled to a waveguide and are allowed to decay with Γ out of the waveguide. In order to
introduce waveguide-coupled Rydberg superatoms, the next step is the consideration of decay
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Figure 3.17: Transmission through and emission from two atoms coupled to a chiral waveguide
driven with different fields. The atoms both start in the ground state. The atoms are coupled
with κ = 0.5 µs−1 to the waveguide. The dotted line shows the driving field, and the colors show
the atom response for different pulse lengths. The dashed lines show the response from two
atoms in free space. a) and b) show the outgoing field from the system when it is driven with
photon rate Rin = 1 µs−1 plotted on a linear and a semi-logarithmic scale respectively. c) and
d) show the outgoing field from the system when it is driven with photon rate Rin = 10 µs−1

plotted on a linear and a semi-logarithmic scale respectively.

Figure 3.18: Sketch of the level scheme for two superatoms coupled to a chiral wavguide. In
the level scheme we highlight the levels present for two two-level systems.
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Figure 3.19: Decay of two superatoms for different dephasing rates γD. The system starts in
the fully inverted state in a) and b), and in the collective bright state |W〉 in c) and d). a)
and c) show the emission on a linear scale, b) and d) are in a semi-logarithmic scale.

to an internal dark state in each superatom. To describe two two-plus-one-level superatoms,
we consider a 9 × 9 density matrix. This system is sketched in figure 3.18. The level scheme
shows the nine different levels: A ground state with both superatoms unexcited |GG〉, four
levels with one excitations, two of them with one superatom in the superatom bright state
and the other in the ground state, |GW 〉 , |WG〉, and two others with one superatom in the
superatom dark state and the other superatom in the ground state |GD〉 , |DG〉. Finally, four
levels with both superatoms excited: Both in the superatom bright state, |WW 〉, both in the
superatom dark state, |DD〉, and two states with one superatom in the bright state and one
in the dark state, |WD〉 , |DW 〉.

Here, it is important to consider the language used: We have so far used the bright state
|W 〉 for any collective bright state, independently of whether it was the bright state of N
superatom-constituent atoms or two waveguide-coupled atoms. Therefore, we introduce the
waveguide bright (dark) state |W〉 (|D〉) corresponding to the symmetric (antisymmetric) state
of one superatom in the superatom bright state and one in the ground state:

|W〉 =
|WG〉+ |GW 〉√

2
, |D〉 =

|WG〉 − |GW 〉√
2

. (3.27)

It is not necessary to consider any collective states in the waveguide containing the superatom
dark states. A superatom dephased into |D〉 is effectively invisible to the waveguide.

Introducing a dark state to each atom does not change the emission out of a two-superatom
system prepared in the |W〉-state. Thus, the decay out of |W〉 which is shown in figure 3.19
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Figure 3.20: Single superatom model with modification. a) The model is modified to include
a coherent coupling between the dark states and the bright state with coupling strength κ
rather than the irreversible dephasing with rate γD. b) Splitting the dark state into coherently
coupled dark states and dark states with irreversible dephasing with rate γD.

panels c) and d) is the same as what is shown in figure 3.16 panels c) and d), showing that
the emission from the state |W〉 is affected in the same way by decay with Γ and γD.

In the case of the system starting in the fully inverted system, however, γD and Γ do not
lead to the same emission. This is shown in figure 3.19 a) and b) and should be compared to
figure 3.16 panels a) and b). The decay is still sped-up, but flatter. This can be understood
as the doubly-excited state being able to decay to both |W〉 but also to the other states with
two excitations: |WD〉 , |DW 〉 , and |DD〉. These other states are shown in figure 3.18.

Yet, both of these decay mechanisms cause a washing-out of the inter-superatomic coupling,
since they lead to a loss of coherence between the superatoms.

3.7.3 Emitters with internal couplings

In the figures shown above, it is clear that the directional coupling between emitters gives
rise to a shelving of excitations in the waveguide dark state |D〉. This discussion of two
coupled emitters and their dynamics between dark and bright pair states should also apply
to N atoms inside one ensemble as discussed in section 2.2. In the Rydberg superatoms the
individual atoms are not coupled to a waveguide, but we still expect a dipole-dipole coupling.
As a consequence we expect a certain degree of coupling between a bright state and the single
system-dark states.

We include such a coupling by extending the superatom-model with a dark state |C〉
coherently coupled to |W 〉 with coupling-strength κ. We revisit this approach again in chapter
4. This is illustrated in figure 3.20 a). The behavior of a system with internal coherent
dynamics will be discussed in greater detail in chapter 4.

In figure 3.21, we show the emission from a system of two superatoms without coupling to
a chiral waveguide for different values of the coherent coupling strength κ. We compare this
to a system with chiral coupling with κ = 0. Indeed, a system with internal dynamics gives
rise to dynamics effects similar as the chiral waveguide-coupling. Panels a) and b) show the
system starting in the collective bright state, and it is apparent that a perfect system with
coherent coupling always features a full drop of emission when initialized in the bright state.
This highlights how the coherently coupled system resembles two idealized waveguide-coupled
two-level atoms. In particular in panel b) it is seen how κ = κ/2 (we plot κ = 0.51κ for
visual clarity) has perfect overlap with the curve for two two-level atoms coupled to a chiral
waveguide. The overlap for κ = κ/2 can be understood from equation 2.33 where J12 ∝ κ/2.
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Figure 3.21: Emission from a system of two superatoms in free space with internal coherent
coupling compared to two two-level atoms coupled to a chiral waveguide. Both systems emit
only into the waveguide mode, γD,Γ = 0. a) and b) shows the systems starting in the collective
bright state |W〉 on a linear and a logarithmic scale respectively. c) and d) shows the systems
starting in the doubly excited system |WW 〉.

In equations 4.1 and 4.2 the κ-term has exactly the same effect as J12 in equation 2.31.
Panels c) and d) show the corresponding situation for the two systems starting in the fully

inverted state. In this case there is no perfect overlap for κ = κ/2. Further, the emission from
two atoms coupled to a chiral waveguide does not drop as far as the system of two superatoms
in free space both with coherent coupling to some internal dark state. This is attributed to
the chiral nature of the waveguide-coupling.

From the above discussion, it is clear that two superatoms with coherently coupled bright
and dark states can be tailored to mimic the dynamics of a chiral waveguide. However, the
introduction of such an internal coherent coupling is merely an abstraction to describe the
expected coupling between the different collectively excitede single excitation states of an N -
atom system. We will return to this point in chapter 4. Yet, from figure 3.21 b) and d) we
already conclude that the internal dynamics of the collectively coupled superatom ensembles
can overshadow effects stemming from the directionality of the superatoms.

3.7.4 Realistic parameters and driving pulse

The introduction of internal superatom dynamics leads us to the final step of this analysis,
where we consider a system of two superatoms driven with an incoming pulse with experimen-
tally relevant parameters. We use the model shown in figure 3.20 b), keeping two dark states,
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Figure 3.22: Model calculations for two superatoms coupled to a chiral waveguide with κ =
0.5 µs−1, Γ = 0.1 µs−1, γD = 1 µs−1, and κ = 0.3 µs−1 driven with different fields. The dotted
line shows the driving field, and the colors show the atom response for different pulse lengths.
The dashed lines show the response from two superatoms in free space. a) and b) show the
calculations for Rin = 1 µs−1 on a linear and a semi-logarithmic scale respectively. c) and d)
show the calculations for Rin = 10 µs−1 on a linear and a semi-logarithmic scale respectively.

|D〉 and |C〉. The dephased dark state |D〉 is populated via irreversible dephasing from |W 〉
and |C〉 with rate γD, while |C〉 couples coherent to |W 〉 with coupling strength κ, but does
not itself couple directly to |G〉. This model will be discussed in detail in chapter 4.

Figure 3.22 shows the model predictions for driving two two-plus-two-level superatoms
coupled to a chiral waveguide. The figure also includes as dashed lines the predictions for the
free-space situation. The parameters chosen are κ = 0.5 µs−1, Γ = 0.1 µs−1, γD = 1 µs−1, and
κ = 0.3 µs−1. The choice of κ will be discussed in chapter 4. These figures again show how
the internal couplings determine the decay rate. It also shows that we do expect to observe a
difference in emission from chirally coupled atoms compared to atoms which are not subject
to chiral coupling, but the difference occurs in the weak emission long after the driving pulse.

Figure 3.23 show the same as figures 3.22, but with κ = 1 µs−1. The other parameters
are left unchanged. From these figures it is clear that as the coupling is increased the dynam-
ics become more different between the chirally coupled and not chirally coupled system. In
particular the larger difference between κ and κ gives rise to different timescales of emission
drop-offs.
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Figure 3.23: Model calculations for two superatoms coupled to a chiral waveguide with κ =
1.0 µs−1, Γ = 0.1 µs−1, γD = 1 µs−1, and κ = 0.3 µs−1 driven with a field of Rin = 1 µs−1. The
dotted line shows the driving field, and the colors show the atom response for different pulse
lengths. The dashed lines show the response from two atoms in free space. a) and b) shows
the calculations on a linear and a semi-logarithmic scale respectively.

3.7.5 Measuring waveguide coupling

Finally, we can consider our options for measuring the waveguide-mediated coupling discussed
in this chapter. Figure 3.23 indicates that a waveguide-mediated effect could be observed for
Rydberg superatoms, but it is important to recognize that the experimental setup discussed
in this thesis does not allow for reference measurements as the ones plotted with dashed lines
in figures 3.23. Also, the current implementation of dimple traps allows us to investigate
individual superatoms, but the sub-systems do not sum perfectly to the combined system
due to imperfect superatom loading. Hence, characterizing the sub-systems precisely is also
a remaining challenge. Without a clear comparison system, it is necessary to identify some
figure of merit of waveguide-mediated coupling in order to claim observation of superatom-
superatom interaction. The observation of such a fingerprint can be obscured by any internal
coherent dynamics in the superatoms.

It is also relevant to note that the discussion given here relies on the superatoms coupling
perfectly to each other through the waveguide, that is, we assume that J12 = J12,max and
neglect phase acquired by the light travelling between the emitters. This assumption, however,
is not necessarily justified given the definition of J12, see eq. 2.33. In the following chapter, we
return to the consideration of internal coherent coupling within a single Rydberg superatom.
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Chapter 4

Internal dynamics of a single
Rydberg superatom

In the previous chapter we introduced Rydberg superatoms consisting of N atoms as effective
two-level systems. We described how they are formed experimentally with Rydberg excitations
in small ensembles of ultracold atoms, and we reviewed the previously obtained results where
the influence of a single Rydberg superatom on a driving field was measured. Finally, we
considered the cascaded decay of an excited chain of superatoms described as a system of
waveguide-coupled emitters.

The superatom itself with its N constituent atoms is also expected to exhibit dynamics
similar to what is found for a chain of waveguide-coupled two-level systems. In chapter 2
we outlined how there are N different collective states of a single excitation shared between
N emitters, of which only one couples strongly to the driving field. However, some coupling
between the different excited states is expected [84].

In this chapter we probe a single Rydberg superatom with a pulse of varying length.
This prepares different internal states of the superatom. We then measure the emission after
extinguishing the driving pulse. We find that the emission rate from the superatom depends on
the length of the driving pulse and thus on the collective internal superatom state. We assume
that this finding can be attributed to coherent internal dynamics and test this assumption
by comparing the experimental findings to a model which includes internal coherent coupling.
This is an extension of the simple model described in section 3.3, and similar to the model
discussed in section 3.7.

The results discussed in this section are the outcome of the first project within the scope
of this thesis. They were published in Physical Review Research in 2020 [156]. Additional
theoretical description of the waveguide system was published in Physical Review A [116].

4.1 Measuring internal dynamics

To investigate the internal dynamics of a single Rydberg superatom we prepare the superatom
following the procedure lined out in section 3.5. In the experiment discussed here, the Rydberg
superatoms were formed by roughly 2 × 104 atoms, yielding an OD on the single photon
transition of ∼ 10 with temperature ≈ 9 µK. A sketch of the experimental setup is shown
in figure 4.1. The probe and control-beams are counterpropagating through the superatom.
We couple to the |111S, J = 1/2,mj = 1/2〉-state with control Rabi frequency 2π × 13 MHz
measured on EIT resonance. We work far-detuned from single photon resonance but on two
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Figure 4.1: Illustration of the experimental setup and procedure discussed in this chapter. A
single Rydberg supearatom is probed with few-photon probe pulses of varying pulse length.
The probe light is coupled into a single mode fiber and detected with single photon counters.
In the detected pulses we observe the coherent dynamics of the superatom interacting with
the light. We study the decay of the superatom after the extinguishing of the probe pulse, by
considering the emission after the driving pulse is over.

photon resonance as discussed in section 3.1, with ∆ ≥ 2π × 100MHz. We verify that we are
working on the resonance by doing Rydberg spectroscopy based on ion detection as discussed
in section 3.5.

To investigate the internal dynamics, we probe the superatoms with few-photon probe
pulses of varying length. We use Tukey-shaped probe pulses with very short risetimes, on the
order of 0.13 µs. We vary the pulse lengths between 0.3 µs and 6.10 µs. The probe light is
coupled into a single mode fiber and distributed on four SPCM’s in a Hanbury-Brown and
Twiss-setup as discussed in section 3.4. By coupling the probe light into a single mode fiber,
we ensure that we measure only transmission throuh and emission from the superatom into
the probe mode. The probability that non-directional emission from the superatom is coupled
into the fiber is negligible.

A few examples of the transmitted probe pulses are shown in figure 4.2 a). We observe
oscillations in the transmitted intensity which reflect the superatom Rabi oscillations corre-
sponding to the absorption and reemission of a single photon as discussed in section 3.5.2. As
the driving pulses end at different times in the oscillatory dynamics, we can explore the decay
of the excitation as a function of the internal superatom state. This approach of changing
the pulse length to prepare the system in a different internal state is also used in for instance
ref. [157]. In principle, the superatom state should also affect the actual pulse shape [158].
In figure 4.1 and figure 4.2 a) the rising edges of the pulses have all been adjusted for visual
clarity such that they coincide with the origin of the time axis. In practice, we fix the pulses
such that they all end at the same time.
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Figure 4.2: Selected pulses of different length and resulting emission after the end of the driving
pulse. a) A selection of pulses. Experimental measurements are shown as points, the dashed
lines show reference measurements. Solid lines show model predictions based on fits to the
experimental data and calculated for the input Tukey-pulses. Notice the break in the y-axis.
The grey rectangles mark the tails which are the basis of the subsequent analysis. b) The tails
of the pulses shown in a). Different pulse lengths yield different reemission of light after the
end of the driving pulse. It is clearly seen that the photon flux depends on the oscillations of
the superatom. Experimental data is shown as points, and dashed lines show the results of
linear fits to the logarithm of the data shown here. c) shows the same as b) on a logarithmic
scale. On this scale it is clear that different pulse lengths also yield different rates of decay. In
particular, we observe a speeding up of the decay rate as the system is going through different
internal states. For the very short pulses we observe a slow decay, while we reach much faster
decay-rates for 1.0 µs pulses. Dashed lines show linear fits to the shown data as discussed in
the main text. Parts of this figure are originally published in [156].

In the following, we investigate the emission from the superatoms after the end of the
driving pulse. The time-windows in which we investigate the emission are highlighted in figure
4.2 a) as grey areas and shown in figure 4.2 b) on a linear scale and again in c) on a semi-
logarithmic scale. The data in panels b) and c) have been corrected for leaking probe light
due to imperfect extinction by subtracting the reference pulses from the measurements with
atoms. Since the measurements presented in this chapter rely on emission of single photons,
we verify that only single photons are emitted after the end of the pulse by measuring the
second order correlation function, g(2)(τ = 0), which we find to be < 0.1 consistent with single
photon emission.

Figure 4.2 b) shows how the photon flux at the end of the driving pulse depends on the
state of the superatom. This is intuitive: The amplitude of reemission into the forward mode
depends on the probability of the superatom being excited.

From the slopes of the photon flux in the logarithmic plot in figure 4.2 c), it becomes clear
that not only the initial photon flux after the pulse, but also the rate of emission depend on
the length of the driving pulse. The different slopes indicate that the superatom is prepared
in states with different decay rates.

To extract estimates for these two characteristic values we assume that the superatom
excitation decays approximately exponentially and apply a linear fit to the logarithm of the
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Figure 4.3: The results of exponential fits to decay of superatom as shown in figure 4.2. The
points are fit results. The dashed line serves as a guide to the eye and connects neighbouring
points. a) decay rate. The dot-dashed line shows κ+ Γ + γD extracted from the two-plus-one-
level model discussed in section 3.3. b) photon flux at the end of the pulse.

tail shown in figure 4.2 c). We only include data points where the number of photons in each
time-bin of 20 ns is significantly larger than the dark count rate. Thus, we define a threshold
where no less than 50 counts have been detected in each time-bin. This threshold is shown in
figure 4.2 c) as a grey area.

The results are shown in fig 4.3. Figure 4.3 a) shows the initial emission rate, and figure
4.3 b) shows the photon flux. Both exhibit oscillatory behavior as a function of pulse length.
The variation in initial photon flux as shown in figure 4.3 b) is expected as a result of the Rabi
oscillations of the superatom and is also captured by the two-plus-one level model discussed in
section 3.3. The change of decay rate, however, is not captured by the model, which predicts
that the emission decays exponentially with a constant rate given by κ + Γ + γD

1. These
values can be extracted from the fits to the output signal for a given input signal as discussed
in chapter 3.4. The constant decay rate is shown in figure 4.3 a) as a dash-dotted line.

Consequently, the experimentally observed decay rates indicate the presence of dynamics
not captured by the model: The presence of an additional coherent process, not between the
ground state and the excited state of the superatom, but in the manifold of excited states as
discussed in section 2.2. We investigate whether this observation is also present for different
coupling strengths of the superatom to the driving field. Equation 3.7 shows that the coupling
strength of the superatom to the driving field depends on the detuning ∆ from single photon
resonance as κ ∝ ∆−2. Therefore, we repeat the measurements shown in figure 4.2 for different
values of ∆ and for different and driving field strengths. The different parameters are summa-
rized in table 4.1. The decay rates and photon fluxes extracted from these measurements are
shown in figure 4.4.

Comparing the curves in figure 4.4 a) and c) we see that an increase in ∆ and thus a decrease

1It may seem counter-intuitive that Γ and γD, which are not related to the coupling to the driving field and
thus emission into the forward mode, appears in the decay rate. However, the superatom emission depends on
the population in the bright state, and this population decays as a function of both κ, Γ and γD. Thus, while κ
determines the amplitude of the emitted light, Γ and γD contribute to the rate of decay from the bright state.
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Figure 4.4: Decay rates and initial photon fluxes for different values of detuning ∆ and input
photon rate Rin. Note that the results from the same datasets are plotted in multiple figures.
The colors indicate the same sets. a) and b) show the fitted decay rate and c) and d) show the
photon flux. a) and c) show results for datasets with ∆ = 2π × 100 MHz, 2π × 125 MHz, and
∆ = 2π × 150 MHz. One sees how the resulting variation of coupling strength is reflected in
the decay rate and the oscillatory dynamics. b) and d) show the decay rate and initial photon
flux for ∆ = 2π × 100 MHz and ∆ = 2π × 125 MHz. For ∆ = 2π × 100 MHZ the data shows
two different values of Rin, Rin = 6.7 µs−1 and Rin = 15.0 µs−1 respectively. One notices that
some datapoints have very large error bars. These points correspond to fits with very low
photon rates, which is also seen in the photon flux.

of κ leads to a slower oscillation in both decay rate and initial photon flux. This reflects the
corresponding change in Rabi frequency of the driving of the superatom. For increasing ∆ we
observe a lower decay rate, which corresponds to expectations since increasing ∆ leads to a
lower Raman decay rate Γ, and a lower forward emission rate, given by κ.

In figure 4.4 b) and d) we investigate the effect of changing the input photon rate Rin.
We observe a slower oscillation in both the initial photon flux and the decay rate for a lower
driving field. However, the decay rates shown in panel b) has the same magnitude for the
same value of ∆. Changing the input photon rate determines the effective Rabi frequency of
the superatom, but it does not change the coupling strength κ. Thus, by varying ∆ and Rin

we explore whether the observed changes in decay rate are related to the coupling strength
or the driving field. We find no clear dependency on either of the varied parameters: The
oscillations persist and maintain their qualitative shape throughout the parameter variation.

To obtain a better understanding of the observations in figure 4.4 we compare these ob-
servations to a model which includes an additional internal coherent coupling between excited
states of the superatom.
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Table 4.1: Parameters for two-plus-one-level system as discussed in the main text.
∆/2π (1/µs) R (1/µs) No. Measurements

100 15.0 1111 · 103

125 15.0 621 · 103

150 15.0 467 · 103

100 6.7 377 · 103

Figure 4.5: Sketch of the extended model which now features a dark state |C〉 which couples
coherently to the bright state with coupling strength κ. |C〉 simulates the subset of other singly
excited collective states which can couple to |W 〉. This model has already been discussed in
figure 3.20.

4.2 Extended model including internal dynamics

The superatom is an ensemble of N atoms sharing a collective excitation. Thus, for a full
microscopic description it is necessary to take into account all the possible collective states of
the N -emitter system and the couplings between them, as discussed in chapter 2. Previously,
we have considered a two-plus-one-level model shown in figure 3.4 to describe the superatom
dynamics based on the assumption that coherent coupling between the excited states is weak
compared to superatom dephasing such that the coherence can be neglected. In particular,
it is assumed in this model that only |W 〉 couples to the light, and that |W 〉 only couples
incoherently to the dark states [159]. These dark states have previously all been abstracted
into a single dark state |D〉 except briefly in section 3.7. This model introduced in section
3.3 provides a good description of the superatom interacting with a driving field as shown
in section 3.4. However, the oscillations in the superatom emission rates after the driving
pulse observed in our experiment are not reproduced. This suggests that the assumption that
coherent coupling between excited states can be neglected is not valid.

In principle, all N excited states and their mutual couplings would need to be considered to
model the system dynamics. As this is computationally demanding, we take a similar approach
as for the two-plus-one-level model and extend this model with a single additional dark state
|C〉, which is coherently coupled at rate κ to the bright state |W 〉 as shown in figure 4.5. The
resulting system Hamiltonian is given by

H0(t) = 2h̄
√
κRinσ

†
GW + h̄κσ†CW + h.c.. (4.1)

This two-plus-two-level model was briefly considered in section 3.7. The state |C〉 is subject
to dephasing into the dark state |D〉 with rate γD and single-atom decay back to the ground
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Figure 4.6: Populations and coherences in a Rydberg superatom with internal dynamics driven
with a field of varying strength. The parameters are κ = 0.5 µs−1, Γ = 0.1 µs−1, γD = 1.5 µs−1,
and κ = κ. a) and b) show all populations for driving pulse with rate Rin = 1 µs−1 and
Rin = 20 µs−1 respectively. c) shows only the population in |C〉 for the two different photon
rates. d) shows the coherences. For visual clarity, only the coherences for Rin = 1.0 µs are
shown. Solid lines indicate imaginary values, the dashed line indicates a real-valued coherence
between |W 〉 and |C〉. The grey, dotted line shows the driving pulses normalized to one.

state |G〉 with rate Γ. There is no emission into the forward mode from |C〉.
The time-evolution is described by the master equation

∂tρ(t) =− i

h̄
[H0(t), ρ(t)] + (κ+ Γ)D[σGW]ρ(t) + γDD[σDW]ρ(t) + ΓD[σGD]ρ(t)

+ γDD[σDC]ρ(t) + ΓD[σGC]ρ(t). (4.2)

As in equation 3.18 we define σµν = |µ〉 〈ν|, and D[σ] = σρσ†−(σ†σρ+ρσ†σ)/2 is the Lindblad
dissipator. The last two terms in equation 4.2 capture the decay of |C〉 into |G〉 and |D〉.

We introduce a new state |C〉 rather than a weak coherent coupling between |W 〉 and |D〉
based on the expectation that the coherent coupling predominantly occurs to a small subset
of dark states which we condense into |C〉. Dephasing with rate γD also populates dark states
with much weaker coherent coupling to |W 〉. Therefore it is very unlikely that population once
transferred into one of these states will ever return to |W 〉, and we continue to treat these
states separately as |D〉.

In figure 4.6 we show how the populations in the different superatom states evolve under
driving for κ = 0.5 µs−1, Γ = 0.1 µs−1, γD = 1.5 µs−1, and κ = κ. In panel a) the system is
weakly driven with rate Rin = 1 µs−1. We see how only a small population builds up in |W 〉
during the pulse, because of the fast decay into |D〉. In panel b), where Rin = 20 µs−1 the
coherent dynamics between |W 〉 and |G〉 are faster than γD, and the model predicts visible
Rabi oscillations between |W 〉 and |G〉. Meanwhile, the population of |C〉 is weak due to the
comparatively weak coupling κ. Panel c) shows a zoom-in on the populations of |C〉 for both
photon rates. For Rin = 20 µs−1, this population undergoes an oscillation correlated with the
coherent return to |G〉 from |W 〉 and the population of |D〉.

In figure 4.6 d) we show the coherences between |W 〉 and |G〉, |W 〉 and |C〉, and |C〉 and
|G〉 under weak driving. The strong drive is excluded for visual clarity. The figure shows a
build-up of coherence between the |W 〉 and |C〉, and also a real-valued coherence between |C〉
and |G〉 which is mediated by the coupling between |C〉 and |G〉, similar to an EIT system
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Figure 4.7: Transmission of a driving pulse through the superatom with and without coherent
internal coupling for different driving fields, and emission from the system prepared fully in
the bright state. The parameters are κ = 0.5 µs−1, Γ = 0.1 µs−1, γD = 1.5 µs−1, and κ = κ.
In c) and d) we also shown the situation of κ = 3κ. a) and b) show the transmission of the
pulses shown in figure 4.6 a) and b). c) The emission from the system starting in the bright
state. d) Same as c) but on a semi-logarithmic plot. The fact that the emitted light does not
go to zero in the emission-dips is due to the coarseness of the calculation.

as discussed in section 3.1. When the system is prepared in |W 〉 and no field is applied, this
coherence does not build up.

As with the two-plus-one-level model, we can now predict the transmission and emission
of light into the forward direction based on the populations and coherences of the superatom.
Figure 4.7 is calculated for the same parameters as figure 4.6. Panels a) and b) show the
intensity under driving with the same pulses as in figure 4.6, calculated with the two-plus-one-
level model (κ = 0), and with the two-plus-two-level model (κ = 0.5 µs−1). The panels show
that the two models predict slightly different behavior during the drive, but the difference is
minimal.

In panels c) and d), we consider the decay from a superatom prepared in |W 〉, also showing
in addition the behavior for κ = 1.5 µs−1 and observe that the presence of coherent coupling
leads to a non-exponential decay. In particular, the semi-logarithmic plot in panel d) highlights
that the additional coherently coupled dark state |C〉 allows for population transfer in and out
of the emitting bright state. This transfer gives rise to oscillatory dynamics on a timescale
determined by κ.

4.2.1 Comparison of waveguide-coupled emitters and model

To benchmark how well the simplified two-plus-two-level model captures the coherent dynamics
of a many-emitter system, we compare it to the behavior of 1000 two-level atoms arbitrarily
distributed along a one-dimensional, chiral waveguide, as discussed in chapter 2. We consider
all 1000 collectively singly excited states.

Figures 4.8 a) and b) show the predicted emission out of the waveguide-system for driving
pulses of varying lengths for κ = 0.45 µs−1 and κ = 1 µs−1, respectively. We assume perfect
waveguide coupling (Γ = 0). The coupling between the different excited states follows from
κ as discussed in chapter 2. The simulations of 1000 atoms coupled to a chiral waveguide
shows non-exponential emission into the waveguide after the end of the driving pulse. For
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Figure 4.8: Comparison between the numerical solution of N stationary emitters coupled to
a waveguide and the two-plus-two-level model. The waveguide is driven with a square pulse,
and the pulse length is varied as in the experiments. a) and b) show fits of the two-plus-
two-level model for two different values of waveguide coupling. a) shows κ = 0.45 µs−1, b)
shows κ = 1 µs−1. Solid lines are results from the numerical solution of N stationary emitters
collectively coupled to a waveguide, and the dashed lines show the two-plus-two-level model
fitted to the waveguide emission. c) shows the relation between the fit-parameters for κ and
the coherent coupling strength κ. For a one-dimensional waveguide the relation between κ
and κ appears to be linear. This figure originally appeared in [156].

κ = 1 µs−1 the first drop and revival of emission after the pulse happens within the simulated
time window.

We fit the two-plus-two-level model to the forward emission calculated for the full waveguide
model. The results are also shown in figure 4.8 a) and b). They demonstrate excellent
qualitative agreement. The models start to deviate at large times after the end of the pulse,
where the signal is far weaker than the experimentally observable level. Finally, as shown in
figure 4.8 we find a linear relation between the fit-results for κ and κ when the two-plus-two-
level model is fitted to the calculated emission in 1D. This is expected from the discussion in
section 2.3.1, and in particular from equation 2.33.

4.3 Application of the model to the experimental data

After we have established that the two-plus-two-level model captures the coherent dynamics of
N atoms coupled to a waveguide, we apply the model to our experimental data to investigate
whether the observed change of emission rates can be caused by coherent internal coupling
between collectively excited states.

To obtain the model parameters, we fit the transmission of the probe pulse through the
superatom. The fitting procedure has the following steps: We fix Γ to the predicted value
given by the natural decay rate of the excited state, Γe the control Rabi frequency, measured
on EIT resonance, and the detuning ∆,

Γ = Γe
Ω2
c

2∆2
. (4.3)

Then we fit the two-plus-one-level model to the transmission to obtain κ. Next we fit the
two-plus-two-level model with κ and γD as free parameters.
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Table 4.2: Parameter sets for model fits to experimental data.
R (µs−1) ∆/2π (µs−1) κ (µs−1) Γ (µs−1) γD (µs−1) κ (µs−1)

15.0 100 0.46 0.15 0.85 0.31
15.0 125 0.32 0.10 0.85 0.32
15.0 150 0.21 0.064 0.85 0.31
6.7 100 0.47 0.15 0.85 0.34

Figure 4.9: Model prediction for superatom behavior for the parameters obtained by fitting
the data shown in figure 4.2. a) Full pulses. The dotted lines show the input pulses which are
found by fitting Tukey-pulses to the experimental reference measurements. c) The long-time
behavior of the system shows how the emission into the probe mode vanishes completely for
short pulses. b) a zoom in on the logarithm of the tails. The dashed lines show linear fits
to the tails. The gray area indicates where the fits end. For consistency the same number of
points have been used as in the experiment.

The parameters obtained this way capture the dynamics during the pulse well, but we find
that γD ≈ 1 µs−1 predicts too fast decay after the end of the pulse.

We attribute this overestimation of γD to decoherence channels which are not described by
the model, such as finite laser linewidth, which is only present during the driving. Therefore we
adjust the value of γD to a value which captures the decay rate after the pulses are over. Since
the suspected decoherence channels are independent of driving field strength and detuning, we
chose the same value γD = 0.85 µs−1 for all datasets. This adjustment of γD does not lead to a
significant modification of the dynamics during the pulse. The fits are performed for the four
data sets listed in table 4.1, and the resulting parameters are summarized in table 4.2. As can
be seen in figure 4.2 a) where the model prediction is plotted together with experimental data
the dynamics of the superatom-light interaction during the driving pulse are well captured.

Reviewing the parameters in table 4.2 we note that the value of κ scales with ∼ 1/∆2 as
expected. In figure 4.8 c), we found that κ scales linearly with κ for N emitters coupled to a
one-dimensional waveguide. However, this tendency is not reflected in the fit results. Instead,
we obtain similar values of κ for all values of κ. We attribute this deviation to the three-
dimensionality of our system and the limited range of the fits. As opposed to the waveguide
case, the individual atoms in the superatom are not restricted in their re-emission direction.
In addition, the fits to the one-dimensional waveguide are reaching far into the experimentally
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inaccessible intensity regime.
In figure 4.9 a) we show the fit results to the data shown in figure 4.2 a). As can be seen

in panel b), the model predicts non-exponential decays i.e. a drop and revival of emission long
after the end of the pulse. The drop becomes less pronounced for longer pulses as the system
is subject to decoherence. This behavior only becomes discernible for very low intensities,
as shown in panel b). To compare the model to the experimental data, we apply the same
approach as for the experimental data to extract initial photon flux and decay rate: A linear
function is fitted to the logarithm of the flux after the extinguishing of the driving pulse as
shown in figure 4.9 c). The linear fit is only an approximation, and the dashed lines shown
in panel c) clearly deviates from the model predictions. However, we employ the linear fits to
treat model predictions and experiment in a similar way.

4.3.1 Comparison of decay rates

Figure 4.10 compares the decay rates and initial photon fluxes extracted from the fits to the
model to the experimental data shown in figure 4.3. Notably, the two-plus-two-level model
predicts similar oscillations in decay rates as seen in the experimental data. The good qualita-
tive agreement between the model and the experimental data shown in figure 4.3 suggests that
the oscillations of decay rates are indeed an indication of internal coherent coupling between
the collective superatom states.

There are however deviations between the model predictions and the observed decay rates.
The experimental data further exhibit larger changes of the decay rates than what is found
by fitting a linear slope to the model predictions, as seen in figure 4.3 a), b, e), and f). In
contrast, the fits to the model yield too high initial photon flux compared to the experimental
results, see figure 4.3 c), d), g), and h). The deviations indicate that extraction of decay
rates through linear fits is already too coarse in the intensity regime we consider. Further,
the predictions are based on a highly simplified model that does not take individual collective
states and coupling rates into account. Also, the model does not distinguish between different
dephasing mechanisms, such as laser line-widths, spatially varying control intensity and AC
Stark shifts for the atoms.

In this chapter we have studied the observation of internal dynamics of a Rydberg super-
atom containing a single excitation. The internal dynamics manifest itself in the emission of
single photons after the end of a driving pulse. The observations presented here highlight how
a Rydberg superatom, consisting of N emitters collectively sharing a single excitation is a
platform for investigation of collective many-emitter-interactions.

The internal dynamics observed here are not only relevant for Rydberg superatoms, but
for all systems where many emitters share excitations. The collective effects are often not
included in the treatment of many-emitter systems which are otherwise suggested as promising
for quantum computation and other applications [108]. Our experimental results indicate that
the collective effects cannot be neglected in all cases, in particular not on the single photon
level.

While the internal dynamics may pose a challenge, it has also been proposed to use col-
lective effects as a way of processing and storing quantum information [38], and this approach
is actively pursued and has recently led to the demonstration of retrieval of subradiantly
stored excitations [160]. Here we consider a disordered ensemble, but platforms such as struc-
tured atom-arrays allow tailored light-emitter interactions [32, 35, 36]. This has recently been
demonstrated with a subradiant mirror [39]. Similar applications have been suggested with
Rydberg atoms [110, 111].
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Figure 4.10: Comparison between experimental and model results of fitting a linear function
to the tail after ended pulse. Solid points show fits to experimental data while open points
show fits to the tails predicted by the two-plus-one-level model. a), b), e), and f) show the
decay rate for different values of κ and Rin, and c), d), g), and h) show the decay rate and
initial photon flux for the same values. f) and h) are for Rin = 6.7 µs−1. All other panels are
for Rin = 15.0 µs−1.
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Chapter 5

Few-photon subtraction with
Rydberg superatoms

While the previous chapter considered the internal dynamics of a single Rydberg superatom
this chapter will look at a chain of multiple Rydberg superatoms. We demonstrate a the
possibility of applying Rydberg superatoms for technical applications, specifically we show
how to realize exact multi-photon subtraction. Reliable subtraction of photons has interesting
applications in quantum optics: as a mean of creating non-classical states of light [161], to
produce and process quantum information [162–164], and for enhanced sensing in quantum
metrology [165].

We realize photon subtraction of up to nsub = 3 photons, using nsub Rydberg superatoms
as saturable single photon absorbers. This approach was first suggested in Ref. [159], and
realized for nsub = 1 with a single Rydberg superatom in 2015 [78, 120]. Besides the exten-
sion to multiple absorbers, this chapter also presents an analysis of fundamental performance
limitations and the potential for scaling beyond nsub = 3.

The approach of storing an absorbed photon in a third, dark state, has also been suggested
for different systems [166–168], and implemented with a microsphere resonator [169].

This chapter begins with a discussion of how a Rydberg superatom is tuned to act as a
single photon absorber, in particular by ensuring a high dephasing rate into the dark state. We
then present the procedure to prepare nsub identical superatoms and demonstrate multi-photon
subtraction. The performance of the multi-photon subtraction depends on the parameters of
the superatoms and the incoming probe pulse, and we identify the regimes where our scheme
works reliably. Finally, this chapter presents a theoretical analysis of the fundamental limits
of our scheme on the photon subtraction.

The results presented here are the outcome of the second project within the scope of this
thesis. They were published in Nature Communications in 2021 [170].

5.1 Single photon absorption through dephasing

Figure 5.1 shows a sketch of the multi-photon subtraction scheme. To subtract nsub photons
from some input pulse, we create a system of nsub cascaded Rydberg superatoms. Each
superatom can to a good approximation be described by the two-plus-one-level system shown
in figure 5.1: A collective ground state |G〉 is coupled to the forward-emitting state |W 〉 with
coupling strength κ. The bright state |W 〉 contains a single Rydberg excitation shared between
N constituent atoms.
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Figure 5.1: Experimental setup for realizing multi-photon subtractor. Up to three Rydberg
superatoms are realized in dimple traps and probed with few-photon pulses. The transmitted
light is coupled into a single mode fiber and detected on SPCMs in an HBT setup. After each
experiment, any remaining Rydberg excitations are ionized and the ions are detected on an
MCP. The superatoms are described by the two-plus-one-level model introduced in section 3.3.

In this simple model discussed in chapter 3, the bright state |W 〉 dephases into N − 1 dark
states which do not emit into the forward direction. These states are still excited to a Rydberg
state, and therefore they are long-lived with a lifetime determined by the Raman decay rate
Γ. We treat these dark states as a single dark state |D〉, and we describe the coupling from
|W 〉 to |D〉 as an irreversible decay with rate γD.

It is typically a goal in experiments in quantum physics to maximize coherence and mini-
mize dephasing. This is for instance the case for the experiments described in chapter 4 and
in previous publications [57, 143]. In contrast, the single photon subtractor suggested in Ref.
[159] and realized here relies on the dephasing of a collective excitation shared between many
emitters to a collective state which decays only slowly, and which is not coupled to the mode
of interest of the system.

Therefore, we aim for maximizing the dephasing rate γD from |W 〉 to |D〉. The dephasing
is caused by many processes, such as atomic motion, stray fields across the atomic ensembles,
varying trapping depth, and scattering of the Rydberg electron with ground state atoms [66,
171, 172].

The dominant source of dephasing becomes apparent from the definition of the bright
collective state of N identical emitters, given by equation 2.21,

|W 〉 =
1√
N

N∑
j=1

ei
~k·~rj |g1g2 · · · rj · · · gN 〉 , (5.1)

where rj is the position of the jth atom and ~k is the wavevector of the spinwave in the system.
As discussed previously, the phase factors containing this wavevector are essential for the
enhanced coupling to the probe mode, and for the directional re-emission into this mode. The
phase information of this state is lost with atomic motion, and the magnitude of the dephasing
is determined by the length of ~k. In our system, ~k is given by the sum of wave-vectors of the
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probe and control fields as described in equation 3.2, and motional dephasing becomes maximal
when the fields are copropagating.

In our theoretical description we treat these effects as homogeneous dephasing sources.
As already discussed in section 3.3, we introduce them in the master equation as a single
dephasing term γD. This simplified approach is considered reasonable as a consequence of
the large number N of constituent atoms in each superatom, which leads to a large number
of states orthogonal to the timed Dicke-state |W 〉. Since the number of orthogonal states is
large, it is very unlikely that the collective excitation will return and become in-phase with
the driving field.

While we have seen in chapter 4 that this approximation is not valid in all situations, it is
justified in this case where the dephasing processes are sped up in the copropagating probing
scheme. Consequently, we neglect the coherent internal dynamics within the superatoms,
which occur on a time-scale much slower than the dephasing.

In the following, we consider a chained system which iteratively takes the output pulse
shape from one superatom and feeds it to the next superatom. In section 3.7 we discussed
how this chained system would look in the case of interactions between the superatoms, and
in particular we concluded that effects of such coupling vanish for large dephasing. Therefore,
we neglect such interactions.

5.2 Preparation of cascaded single photon absorbers

Figure 5.1 shows the experimental setup used to realize multi-photon subtraction. The super-
atoms are created as discussed in chapter 3.4, and the system allows up to three superatoms in
series. We probe the multi-photon absorption with few-photon pulses and use field-ionization
to ionize any remaining Rydberg excitations after the probing. The ions are detected as
described in section 3.4.

For the experiments discussed here we use atomic ensembles with on the order of 10,000
atoms in the excitation volume. The exact number of atoms depends on the number of traps
applied, as shown in figure 3.9. We carry out the experiments at a temperature of around 9 µK.
To realize the actual superatoms, we couple the atoms to the |r〉 = |121S, J = 1/2,mj = 1/2〉-
state with control Rabi frequency of 13× 2π MHz and Raman detuning ∆ = 2π × 100 MHz.

In this section we discuss how we prepare the Rydberg superatoms to realize the setup
sketched in figure 5.1. Most details are already covered in section 3.5. Here we focus on
the different loading procedure applied to load different numbers of superatoms, and how we
ensure that the superatoms are as identical as possible.

5.2.1 Superatom loading procedure

The dimple traps are loaded from atoms trapped in a crossed optical dipole trap, which also
provides radial confinement for the atomic ensembles in the dimple traps. Hence, the geometry
of the trap and the distribution of atoms in the dipole trap set a limit on the number of well
separated dimple traps and thereby a limit on the number of superatoms. This follows from
the simple fact that the superatoms need to be separated by distances � rB, and that the
filling of the dimple traps relies on the overlap with the optical dipole trap as discussed in the
previous chapter.

We adapt a tailored loading procedure depending on the number of ensembles. The details
are outlined in section 3.4. In the case of one or two atomic ensembles, we simply turn up
the intensity of the dimple beams gradually. For three ensembles, we first ramp up the two
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Figure 5.2: Probe transmission through three atomic ensembles across resonance in the absence
of a control field. For the full system with three ensembles simultaneously, and with the three
ensembles probed individually as discussed in the main text. Fitting the transmission and
extracting the optical depth yields 20.1 for the entire system, and 6.1,5.2, and 5.6 for the
individual ensembles respectively. The dashed lines show the fits. The error bars show one
standard error of mean. Each data point is a result of on the order of 2000 measurements.

Number of absorbers Optical depth Transmission

3 20 0.9846
2 16 0.9867
1 11 0.9899

Table 5.1: Parameters different numbers of atomic ensembles. The optical depth on probe
transmission and transmission at ∆ = 2π × 100 MHz in absence of control field scales as
expected with the number of ensembles.

traps on the sides and then adjust the ramping time of the third trap in the middle to get
similar atom numbers in each of the three ensembles. During a final step we turn off the
crossed optical dipole trap to allow atoms trapped outside the dimples to escape. We then
ramp up the dipole trap once more to provide radial confinement. Absorption images of the
three ensembles are shown in figure 3.9.

5.2.2 Identical superatoms

To ensure that all three ensembles contain similar atom numbers, we adapt the trap intensities
and positions to arrive at similar optical depth. Figure 5.2 shows the probe transmission for
nsub = 3 as well as for the individual ensembles. To obtain values for the individual ensembles,
we move the traps for two out of three ensembles aside and then turn them off as shown in figure
3.8. We optimize the loading procedure to get similar optical depth for the three individual
ensembles.

The dimple trapping beams are kept on during probing as discussed in section 3.5.2, and
give rise to a differential light shift. The intensity in each dimple trapping beam determines the
shift experienced by each atomic ensemble, and thus the exact two-photon resonance frequency.
To ensure that all three superatoms have the same resonance frequency, we employ Rydberg
spectroscopy combined with site-resolved ion detection to determine the resonance frequency
of each superatom as discussed in section 3.5.2 and shown in figure 5.3. The intensity changes
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Figure 5.3: Detection time of ions at Rydberg resonance as in figure 3.10. a) shows the timing
of ion detection as a function of the probe detuning. The x-axis shows the detection time.
Each slice corresponds to a different detuning. b) shows the time trace for the slice of a)
marked with a dotted line. The colored areas indicate the regions which are summed to give
the ion count in each of the superatoms. The width of the peaks is due to fluctuations in
detection time caused by temporal fluctuations in a high-voltage switch. c) ions from each of
the three detection windows as a function of detuning. Error bars are standard error of mean.

that are required to tune the superatoms into resonance are so small that they do not affect
the optical depth.

5.2.3 Residual probe absorption

While we work far-detuned from the probe transition with ∆ = 2π × 100 MHz, there is still
a small amount of off-resonant scattering on the probe transition. Therefore, we measure the
transmission through the ensembles at ∆ = 2π×100 MHz in absence of the control field. Table
5.1 shows the OD on probe resonance and transmission at ∆ = 2π×100 MHz for nsub = 1, 2, 3
respectively. The data presented in the following sections have been corrected for this.

5.3 Multi-photon subtraction

With nsub = 1, 2, or 3 identical superatoms prepared as discussed above we can now investigate
and characterize the absorption of individual photons by probing the chain of superatoms
with few-photon probe pulses. We probe the nsub ensembles with coherent Tukey-shaped few-
photon pulses as defined in equation 3.19. We use pulses with up-time tup = 1.5 µs and rise-
and fall-time trise = 1.0 µs. We vary the pulse amplitude, keeping < 40 photons per pulse. The
few-photon pulses are detected as discussed in section 3.4.

Figure 5.4 shows the temporal transmission profile for selected input photon rates for
nsub = 1, 2, 3. As expected, the absorption increases for larger nsub. The measured output
profile shows how the superatoms go through different regimes as predicted by the theory: For
low input photon numbers the superatom is barely excited, but for higher photon numbers
the expected oscillatory dynamics set in.

For low input photon rates the missing photons are observed as relatively large changes
to the pulse. The output pulses never rise to the same level as the input pulse, and even on
the falling edge of the input pulse the absorbers are still absorbing photons. As the number
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Figure 5.4: Probe pulse transmission for different nsub and different incoming photon rate
Rin. Colored points show experimentally measured transmission through the superatoms,
gray points show the reference pulses. Solid, gray lines show model predictions. The model
predictions are calculated from the reference pulses.

of input photons increases, the absorption becomes relatively less prominent as expected due
to the saturability of the absorbers. For Rin ≈ 5 we see a clear sign of saturation when the
output pulse reaches the same level as the input pulse.

In the case of Rin ≈ 10 one clearly sees the coherent dynamics as stimulated emission.
Absorbed photons which are subsequently reemitted into the forward mode do not contribute
to the number of absorbed photons. Similarly, we observe a small after-pulse for low input rate
for nsub = 3. Though these photons have been redistributed within the pulse by the coherent
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Figure 5.5: Single photon subtraction from one, two or three superatoms. a) shows transmitted
photons as a function of incoming photons. The expected slope shown as dashed grey lines
show 〈n〉in−1, 2, 3 respectively. The data have been corrected with the ground state scattering
as discussed in the main text. b) shows the same data as a) but adjusted with input photons.
This shows that for increasing nsub the probability of absorbing too many photons increases.
We also observe that some of the Rabi dynamics survive in the absorbed photons, indicating
that the subtractors are not fully dephased.

dynamics, they are not lost from the forward mode of the system.

5.3.1 Subtraction performance

To obtain the number of absorbed photons, we compare the total photon number over the
entire pulse length with and without absorbers in the path. Figure 5.5 a) shows the number
of transmitted photons nout as a function of input photon number nin for nsub = 1, 2, 3.
The dashed lines show the incoming number of photons minus one, two, and three photons
respectively and are included as guides to the eye. These lines have been corrected for the
residual absorption as discussed above. Figure 5.5 b) shows the difference 〈nout〉 − 〈nin〉. As
observed in figure 5.4 the full absorption of nsub photons is not reached for very low input
photon numbers. This is due to the fact that the pulse area

√
κRinτ < π is insufficient to

fully drive the superatom to the excited state. As nsub is increased, this effect becomes more
prominent: While a single absorber works reliably from nin ≈ 5 the nsub = 3 system requires
nin > 10 for reliable absorption of three photons, since the second absorber will experience
weaker driving than the first, and so on.

Figure 5.5 shows that subtraction of one, two, and three photons works reliably in the
range between 10 and 40 input photons. For high input photon numbers, figure 5.5 b) shows
that there is a small amount of excess absorption.

Based on the transmission profiles presented in figure 5.4 it is possible to apply the two-plus-
one-level model introduced in section 3.3 to the data. Table 5.2 lists parameters yielding good
agreement with both the profiles shown in figure 5.4 and the number of absorbed photons shown
in figure 5.5. Comparing the parameters shown in table 5.2 to the parameters presented in table
4.2 of the previous chapter we clearly see the enhanced dephasing due to the copropagating
probe- and control beams.
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Number of absorbers κ (µs−1) Γ (µs−1) γD (µs)

1 0.494 0.045 2.329
2 0.330 0.020 3.215
3 0.350 0.040 2.393

Table 5.2: Parameters yielding good model agreements with experimental data.

The excess absorption 〈nin〉 − 〈nout〉 > nsub that is observed for the experimental data in
figure 5.5 is predicted by the model for Raman decay with rate Γ > 0, indicating that the
presence of Raman decay affects the fidelity of the absorber.

5.3.2 Rydberg populations

Deterministic nsub photon absorption implies that each superatom absorbs not only a single
photon on average but exactly one photon every time. To verify that our superatoms do not
absorb multiple photons at a time we consider the system Rydberg population after the end of
the pulse. As discussed in chapter 3.4 and previously in this chapter, the experimental setup
allows spatial resolved ion detection of Rydberg excitations for the individual superatoms.

Figure 5.6 a) shows the mean number of ions as a function of incoming photons for the
datasets shown in figure 5.5. The figure also shows predicted Rydberg population predicted
by the from the two-plus-one-level model with the parameters given in table 5.2 scaled with
the detection efficiency for each ion detection window. The scaling is slightly different for the
different windows.

Both model and experimental data show the predicted saturation of the Rydberg popula-
tion at high photon numbers, indicating that only one excitation can be present at any time
in each ensemble. The slight variation of the Rydberg population in the saturated regime can
be explained by the timescale of dephasing relative to the superatom Rabi oscillation.

From the detected ions we calculate the Mandel Q-parameter. The Mandel Q-parameter
quantifies how similar a given probability distribution is to a Poissonian [173]. It is defined as

Q =
〈n2

ion〉 − 〈nion〉2

〈nion〉
=

var(nion)

〈nion〉
− 1. (5.2)

For a Poissonian distribution with 〈nion〉 = var(nion), Q = 0. For a sub-Poissonian distribution,
Q < 0. In the case of a perfect system where a single ion is detected in each experiment,
Q = −1.

For a non-perfect experimental system it is necessary to take the detection efficiency and
the ion production probability into account. For this purpose, the ion detection process can
be described as the number of successes in a number of Bernoulli trials. Assuming that the
probability of success is p, the mean number of successes for such trials is 〈nion〉 = p, and the
variance is given by var(nion) = p(1− p). Therefore,

Q =
p(1− p)

p
− 1 = −p = −〈nion〉 . (5.3)

Thus, if the detection efficiency η is finite, then Q ≤ −η. In the experiments presented here,
the ion-production probability and the detection efficiency depends on the superatom location
and can be inferred from the saturation level seen in figure 5.6 a). Figure 5.6 b) shows Q
calculated for both experimental data and the results of the model.
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Figure 5.6: Ion statistics for nsub = 3 compared with theoretical predictions from the model
presented in section 3.3. The ion windows are also shown in figure 5.3. a) Mean number of
ions from each of the three absorbers and the total mean ion count. The detection probability
is lower for ’superatom 3’, but this superatom is actually probed first, and thus it is expected
to experience a higher number of photons. Consequently it rises faster than superatom 1, but
saturates to a lower value. b) Calculated Mande Q-parameter for each of the three superatoms
and the total system.

While the values Q < 0 indicate subpoissonian excitation statistics, double-excitations can
only be ruled out by comparing Q to nion since η < 1. If the ion detection events follow a
binomial distribution, which indicates that each absorber never produces more than a single
excitation, we expect

Q

〈nion〉
= −〈nion〉
〈nion〉

= −1. (5.4)

Figure 5.7 shows Q/〈nion〉 for the three individual absorbers for nsub = 3. For low incoming
photon numbers, dark counts dominate the signal and lead to Q > −1, but for larger values
Q/〈nion〉 is close to −1, the value that is expected for a binomial distribution. This show
superatom saturation at a single excitation. The slight deviation observed as the number of
incoming photons increases indicates that the superatoms occasionally contain more than a
single Rydberg excitation.

Secondary Rydberg excitations can have different causes, such as incomplete blockade,
antiblockade [174, 175], facilitated excitations [176], and cross detection of ions between the
different ion windows.

To account for double Rydberg excitation in the model, we introduce a probability to
create a second excitation, p2 〈nin〉, which scales linearly with input photon rate. Further, we
introduce a dark-count probability which is independent of input photons and is based on the
ion dark counts measured in the experiments of 9 kHz. For the data shown in figures 5.5 and
5.6 we find good agreement with the experimental data for p2 = 3.5, 6.5, and 5.0× 10−4 for the
first, second and third absorber in the nsub = 3-system, respectively. The lower probability for
a second excitation in the first superatom may be attributed to the fact that the ion detection
window for this superatom is further separated in time than the other two, as seen in figure
5.7. This temporal separation makes cross detection less likely. Also, we need to introduce
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Figure 5.7: Q-over-mean for detected ions produced in a system of nsub = 3 Rydberg super-
atoms as a function of photons in the driving pulse. The colors correspond to the colors of
figure 5.6. The dotted lines are predicted values.

five times as much noise for the second absorber as we would expect from the dark counts.
We attribute this to the higher probability of detecting ions generated in the neighbouring
absorbers within the ion window of this absorber.

5.3.3 Photon correlations

Finally, we show that the multi-photon absorber can be used to manipulate the quantum state
of the light in the probe pulses. This was seen for a single Rydberg superatom in section 3.5.2.

For this purpose, we analyse the time-dependent intensity correlation function from the
detection events on two detectors

g(2)(t1, t2) =
〈n1(t1)n2(t2)〉
〈n1(t1)〉 〈n2(t2)〉

. (5.5)

Figure 5.8 shows the measured correlation function for nsub = 3 for two different Rin compared
with corresponding model-predictions. For zero time-delay t1 = t2, the correlation function
shows an initial anti-bunching feature where g(2)(t2 − t1 = 0) < 1 and then photon bunching,
g(2)(t2 − t1 = 0) > 1.

The bunching and antibunching for zero time-delay stems from photon absorption and
the coherent dynamics of the superatoms interacting with the probe pulse, which leads to a
reordering of photons within the pulse.

The deviation from Poissonian photon statistics also highlights that the nsub-photon sub-
traction demonstrated here is fundamentally different from the application of the annihilation
operator. The nsub-photon subtraction reduces the mean number of photons in a coherent
pulse by nsub without changing the photon number uncertainty. In contrast, the annihilation
operator does not affect the photon statistics of the coherent light pulse by definition as the
coherent states are eigenstates of the annihilation operator.

5.4 Performance limitations

In the previous section we have demonstrated multi-photon subtraction realized with a chain
of Rydberg superatoms. The subtraction works reliably for a wide range of input photon rates,
but in figure 5.5 we have observed a small amount of excess absorption, which is primarily
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Figure 5.8: Photon correlation functions for nsub = 3 for two different photon rates. a)
and b) show experimental results and theoretical prediction respectively for an input pulse of
Rin ' 5.5 µs−1. c) and d) show the same for Rin ' 10 µs−1.

caused by spontaneous Raman decay determined with rate Γ. Though the time-scale of this
decay is much slower than the other time scales of the system 0 < Γ < κ, γD, even a small
probability that the absorber returns to the ground state without reemission into the forward
mode allows for subtraction of more than one photon by each absorber.

The consequence of Raman decay becomes even more apparent for longer pulse lengths.
Figure 5.9 a) shows three examples of the input and output photon profiles for pulses with
tup = 3.0 µs. Panel b) shows the number of subtracted photons, which clearly exceeds nsub = 3
for sufficiently many input photons.

In contrast, figure 5.10 a) and b) show data for short pulses with tup = 0.5 µs. Here the
number of subtracted photons is lower than nsub = 3. In this case, the dephasing with rate
γD of the system will not be fast enough to bring the bright state population into a dark state
before the driving pulse is over. Therefore, there is a finite probability to reemit absorbed
photons into the forward mode.

From these observations, we conclude that the multi-photon subtraction shown in figure 5.5
cannot be achieved for arbitrary pulse lengths, since the absorption mechanism relies on the
characteristic time-scale of the dephasing relative to the other time-scales of the system. Hence,
depending on the pulse length the system parameters must be adapted for best performance.

For a single absorber, the mean number of lost photons due to Raman decay is given by

〈NRaman(t)〉 = Γ

∫ t

t0

dt′PRyd(t′), (5.6)
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Figure 5.9: Photon subtraction in superatom chain with nsub = 3 for driving pulses with
tup = 3.0 µs. a) temporal transmission profile for three different input photon rates. Points
show transmission, and dashed lines show driving field. b) photon subtraction. Points show
data, and connecting lines serve as a guide for the eye. Standard error of mean error bars are
too small to resolve.

where PRyd is the probability of finding the system in a Rydberg state. Figure 5.11 a) shows
the sum of Rydberg population in |W 〉 and |D〉 and 〈NRaman(t)〉, which reflects the number
of absorbed photons, for Γ = 0, 0.004, and 0.04 µs−1 for a single absorber under constant
driving. The shaded areas show one standard deviation

√
Var(NRaman(t)). We calculate the

standard deviation by considering an additional, virtual spin chain, which is populated via
Raman decay. This approach allows us to count the number of lost photons. While the mean
number of subtracted photons only deviates slightly with Γ, the standard deviation increases
with both time and Γ. The increasing standard deviation highlights how the system starts to
deviate from deterministic behavior and reverts to a classical attenuator.

Even for Γ = 0, the subtractor works best in a specific range of parameters if the time-
scales of pulse length, κ, and γD are matched. Figure 5.11 b) shows the population in |D〉
for a superatom with Γ = 0 and κ = 0.35 µs−1 driven for 3 µs as a function of γD and Rin.
A large regime exists where the system is almost fully in |D〉, which is bounded by different
processes: The photon rate

√
κRin needs to be sufficient to ensure excitation from |G〉 to |W 〉.

Furthermore, the dephasing γD needs to be sufficiently high to ensure transfer from |W 〉 to
|D〉 within the length of the pulse. It is thus required that both

√
κRinτ and γDτ � 1.

Finally, when γD becomes too large, the system enters an overdamped regime: As γD
increases, the probability to excite the superatom within the time set by the pulse length
is reduced. This is due to the presence of a strong decay channel to |D〉, which effectively
corresponds to adiabatic elimination of |W 〉. This is seen in figure 3.5. This again sets a
γD-dependent lower limit for Rin.

A further limitation on the pulse lengths and incoming photon rate is the probability that
a second photon is absorbed due to breakdown of the Rydberg blockade. This is relevant
for short pulses and strong driving fields, which give rise to Fourier and power broadening
respectively.

5.4.1 Scaling to many absorbers

After considering the limitations of a single absorber, we finally consider how the limitations,
i.e. Raman decay, affect the scalability to many absorbers. In figure 5.12 we show the total
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Figure 5.10: Photon subtraction in superatom chain with nsub = 3 for driving pulses with
tup = 1.5 µs. a) temporal transmission profile for three different input photon rates. Points
show transmission, and dashed lines show driving field. b) photon subtraction. Points show
data, and connecting lines serve as a guide for the eye. Standard error of mean error bars are
too small to resolve.

dark state population for a chain of up to nsub = 8 absorbers as a function of γD. We compare
the performance for Γ = 0 to the case of a weak Raman decay, Γ = 0.04 µs−1. As nsub

increases, the probability of finding the system with all absorbers in the dark state decreases.
Even for Γ = 0, a chain of nsub = 8 will not reach perfect absorption any γD for the pulse used
here, because the driving of the later absorbers becomes too weak. For finite Γ the chain is
even further away from full saturation. This is not to be confused with too little absorption of
photons. As we have seen in figure 5.11, presence of Raman decay leads to excess absorption,
which is reflected in the lack of saturation.

The fundamental limitations discussed above are not unique to our scheme based on Ry-
dberg superatoms [177]. For example, the finite lifetime of the excited state will affect any
scheme which relies on excitation storage in an uncoupled excited state and any scheme in-
volving coherent absorption will require a minimum driving strength.

In addition to the limitations discussed above, there are also technical limitations. First
of all, the amount of photons scattered on the probe transition increases with the number of
absorbers and the resulting increase in overall optical depth as seen in table 5.1. This can be
limited by increasing ∆ but cannot be fully suppressed.

The geometry of the setup also imposes limitations. It is a crucial prerequisite that the
spot size of the probe beam is smaller than the range of the Rydberg blockade. In the current
implementation, the probe beam is focused to a 1/e2-waist radius 6.5 µm, yielding a Rayleigh-
length of 150 µm. This limits the length over which absorbers can be placed.

Additionally, this length is also limited by the crossing region of the crossed optical dipole
trap which is required for radial confinement of the atoms in the dimple traps. This limitation
can however be overcome relatively easily by adding an optical trapping beam along the probe
axis.

In this chapter we have demonstrated how a system of up to three cascaded superatoms
can be applied to manipulate pulses of light photon by photon via subtraction of exact photon
numbers. The system discussed here could for instance also be employed for number resolved
photon detection. This would require nsub � the mean number of photons in the pulses of
interest, such that all photons are absorbed and can be read out. In the current setup, the
detection of the absorber states through field ionization is a limiting factor due to the finite
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Figure 5.11: Theoretical analysis of superatom performance. a) Rydberg population plus
lost photons from inclusion of Raman Decay Γ. Shaded area shows uncertainty in number
of lost photons. Calculated for γD = 2.4 µs−1 and Rin = 5 µs−1. b) Dark state population
depending on γD and Rin. Dashed lines show different bounds on absorption:

√
κRinτ = π/2,

exp(−γDτ) = 0.1, and exp(−4κRinτ/γD). Solid line shows the 90 % contour.
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Figure 5.12: The dark state population for nsub = 1, 2, 4, and 8 for Rin = 5 µs−1 and pulse of
length of 4 µs. Solid lines show the dark state population for Γ = 0, and dashed lines are for
Γ = 0.04 µs−1.

ion detection efficiency of ≈ 20%. This could be improved by chosing a different detection
scheme, for example optical detection [178–180].
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Chapter 6

Conclusion and outlook

In the previous chapters, we have discussed the concept of a Rydberg superatom: A small
ensemble of ultracold atoms coupled to a Rydberg state. The atoms are addressed on a
Raman transition, and due to the Rydberg blockade effect the entire ensemble is limited to
a single excitation. Therefore, the superatom effectively acts in most aspects as a two-level
emitter. Due to the collective nature of the Rydberg excitation the superatom couples strongly
to driving fields, and because of the phase information imprinted by this field in the excitation,
the superatom primarily emits spontaneously back into the exciting mode.

This thesis is an extension of previous work [57, 78, 143], which focused on the interaction
of a single Rydberg superatom with a probe field. Due to the directionality of superatom
emission, the superatom is a promising candidate to realize one-dimensional cascaded quantum
systems.

However, the excited state of the superatom, which forms the upper state of the idealized
two-level system, is only one of many possible singly excited collectively states. In this work we
have explored the couplings within this set of states with a single collective excitation, and in
particular excitation transfer between different collective states. We investigated this transfer
experimentally through the emission into the forward mode after driving the superatom with
pulses of varying duration to prepare different internal superatom states.

For the rate of the emission, we observed an oscillation depending on pulse length, which
we attribute to coherent coupling between the different internal states of the atoms. The
ability to observe and quantify the emission of less than a single photon per pulse is a result
of the strong directionality of superatom emission.

As a first realization of a cascaded quantum system of Rydberg superatoms we have real-
ized a saturable multi-photon subtractor building on the previous realization of single photon
subtraction with a single Rydberg superatom [78]. We demonstrated multi-photon subtrac-
tion by sending coherent few-photon pulses through a chain of one, two, or three Rydberg
superatoms and have observed how the subtraction leads to a modification of the quantum
state of the light pulses. We analyzed the limitations of the subtraction protocol, also in the
context of scalability to nsub > 3 and concluded that the fidelity is primarily limited by the
limited excited state lifetime due to Raman decay, which causes excess loss of photons.

6.1 Future Perspectives

To demonstrate multi-photon subtraction, we have used rapid dephasing of the superatom
bright state into excited but nonradiating collective states as a mean to remove single photons
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Figure 6.1: The calculated transmission of a probe field through and emission from a system
of three (3) chained Rydberg superatoms coupled to a chiral waveguide. The superatoms are
modelled with internal coherent dynamics for parameters κ = 10.3 µs−1, and γD = Γ = κ =
0.3 µs−1. The driving field has photon rate Rin = 1 µs−1. The solid lines show the response
from the waveguide-coupled superatoms, while the dashed lines show the same calculated for
superatoms in free space. a) and b) show the transmission in a linear and a logarithmic scale
respectively.

from a probe pulse. However, in order to observe interactions between superatoms mediated
by the directional photon exchange along the probe mode dephasing must be minimized. This
is anlogue to the interaction between emitters coupled to a chiral waveguide as discussed in
section 3.7. Our analysis in section 3.7 concluded that it can be a challenge to distinguish effects
that result from photon exchange between the superatoms and coherent exchange interactions
within the individual superatoms as observed in chapter 4.

To observe and quantify the effect of interactions between superatoms, the coupling and
decay rates of the individual superatoms must be optimized such that the coupling to the
probe mode is the dominant contribution to the system dynamics.

This could be achieved by increasing the number of atoms in each superatom or increasing
the control Rabi frequency. Both approaches have their limitations, however, since increasing
the atom number and density may cause additional dephasing through inhomogeneous broad-
ening [134], while an increased control Rabi frequency leads to an increase in Raman decay
rate as seen in equation 3.3.

The ratio of the coherent coupling relative to dephasing rate can also be improved by
introducing a magic wavelength lattice trap that limits atomic motion along the probe mode
[181]. The introduction of a magic wavelength trap would lead to a faster single atom decay
due to the admixture of additional decay channels. However, in the current setup, where
γD ' 15Γ, we would still expect a significant overall improvement. The implementation of
such a trap is currently underway.

Other ways of improving the coupling-to-dephasing ratio would be to cool the atoms to
lower temperatures or to use a different atomic species with a smaller difference in probe and
control wavelength, such as ytterbium with 399 and 395 nm respectively.

Figure 6.1 revisits the simulations presented in section 3.7 for three superatoms with im-
proved parameters, i.e. κ = 1 µs−1, and γD = Γ = κ = 0.3 µs−1, and compares the probe light
transmission and emission with and without coupling along the waveguide.

On the logarithmic plot in panel b), we observe that the waveguide-mediated superatom-
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superatom coupling alters the timescale of the non-exponential decay. This implies that in an
ideal system with point-like superatoms and κ defining the dominant time-scale of the system,
signatures of the waveguide-mediated interaction should be observable.

The experiments discussed here differ from other waveguide-coupled emitters since the su-
peratoms enable directional coupling in a single optical mode purely based on their collective
nature, without a physical waveguide. Moreover, constituent atoms are not coupled to this
superatom-defined waveguide. One can also consider systems where the superatoms are cou-
pled to a physical waveguide [105], such as an integrated optical waveguide on a chip, or a
tapered optical nano-fiber. The prospect of mediating interactions between Rydberg super-
atoms through optical photons falls in line with recent efforts into using collectively encoded
Rydberg qubits for quantum simulations and information processing [62, 182–185].
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[28] Daniel Barredo, Sylvain de Léséleuc, Vincent Lienhard, Thierry Lahaye, and Antoine Browaeys.
“An atom-by-atom assembler of defect-free arbitrary two-dimensional atomic arrays”. Science
354 (2016), pp. 1021–1023.

[29] Manuel Endres, Hannes Bernien, Alexander Keesling, Harry Levine, Eric R. Anschuetz, Alexan-
dre Krajenbrink, Crystal Senko, Vladan Vuletic, Markus Greiner, and Mikhail D. Lukin. “Atom-
by-atom assembly of defect-free one-dimensional cold atom arrays”. Science 354 (2016), pp. 1024–
1027.

[30] Waseem S. Bakr, Jonathon I. Gillen, Amy Peng, Simon Fölling, and Markus Greiner. “A quan-
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